Analysis of Algorithms, I
CSOR W4231

Eleni Drinea
Computer Science Department
Columbia University

Shortest paths in weighted graphs (Bellman-Ford, Floyd-Warshall)
Outline

1. Shortest paths in graphs with non-negative edge weights (Dijkstra’s algorithm)
 - Implementations
 - Graphs with negative edge weights: why Dijkstra fails

2. Single-source shortest paths (negative edges): Bellman-Ford
 - A DP solution
 - An alternative formulation of Bellman-Ford

3. All-pairs shortest paths (negative edges): Floyd-Warshall
Shortest paths in graphs with non-negative edge weights (Dijkstra’s algorithm)
 - Implementations
 - Graphs with negative edge weights: why Dijkstra fails

Single-source shortest paths (negative edges): Bellman-Ford
 - A DP solution
 - An alternative formulation of Bellman-Ford

All-pairs shortest paths (negative edges): Floyd-Warshall
Graphs with non-negative weights

Input

- a weighted, directed graph $G = (V, E, w)$; function $w : E \rightarrow R^+$ assigns non-negative real-valued weights to edges;
- a source (origin) vertex $s \in V$.

Output: for every vertex $v \in V$

1. the length of a shortest s-v path;
2. a shortest s-v path.
Dijkstra’s algorithm (Input: $G = (V, E, w), s \in V$)

Output: arrays $dist$, $prev$ with n entries such that

1. $dist(v)$ stores the length of the shortest s-v path
2. $prev(v)$ stores the node before v in the shortest s-v path

At all times, maintain a set S of nodes for which the distance from s has been determined.

- Initially, $dist(s) = 0$, $S = \{s\}$.
- Each time, add to S the node $v \in V - S$ that
 1. has an edge from some node in S;
 2. minimizes the following quantity among all nodes $v \in V - S$

\[
d(v) = \min_{u \in S : (u,v) \in E} \{dist(u) + w(u,v)\}
\]

- Set $prev(v) = u$.

Implementation

Dijkstra-v1(\(G = (V, E, w), s \in V\))

Initialize(\(G, s\))

\(S = \{s\}\)

while \(S \neq V\) do

Select a node \(v \in V - S\) with at least one edge from \(S\) so that

\[
 d(v) = \min_{u \in S, (u,v) \in E} \{\text{dist}[u] + w(u,v)\}
\]

\(S = S \cup \{v\}\)

\(\text{dist}[v] = d(v)\)

\(\text{prev}[v] = u\)

end while

Initialize(\(G, s\))

for \(v \in V\) do

\(\text{dist}[v] = \infty\)

\(\text{prev}[v] = \text{NIL}\)

end for

\(\text{dist}[s] = 0\)
Improved implementation (I)

Idea: Keep a conservative overestimate of the true length of the shortest s-v path in $\text{dist}[v]$ as follows: when u is added to S, update $\text{dist}[v]$ for all v with $(u,v) \in E$.

Dijkstra-v2($G = (V, E, w), s \in V$)

Initialize(G, s)

$S = \emptyset$

while $S \neq V$ do

Pick u so that $\text{dist}[u]$ is minimum among all nodes in $V - S$

$S = S \cup \{u\}$

for $(u, v) \in E$ do

Update(u, v)

end for

end while

Update(u, v)

if $\text{dist}[v] > \text{dist}[u] + w(u, v)$ then

$\text{dist}[v] = \text{dist}[u] + w(u, v)$

prev[v] = u

end if
Improved implementation (II): binary min-heap

Idea: Use a priority queue implemented as a binary min-heap: store vertex \(u \) with key \(\text{dist}[u] \). Required operations: \text{Insert}, \text{ExtractMin}; \text{DecreaseKey} for \text{Update}; each takes \(O(\log n) \) time.

Dijkstra-v3(\(G = (V, E, w), s \in V \))

\begin{align*}
\text{Initialize}(G, s) \\
Q = \{V; \text{dist}\} \\
S = \emptyset \\
\text{while } Q \neq \emptyset \text{ do} \\
\quad u = \text{ExtractMin}(Q) \\
\quad S = S \cup \{u\} \\
\quad \text{for } (u, v) \in E \text{ do} \\
\quad\quad \text{Update}(u, v) \\
\quad \text{end for} \\
\text{end while}
\end{align*}

Running time: \(O(n \log n + m \log n) = O(m \log n) \)

When is Dijkstra-v3() better than Dijkstra-v2()?
Example graph with **negative** edge weights
Dijkstra’s output and correct output for example graph

Dijkstra’s output

Correct shortest paths

Dijkstra’s algorithm will first include a to S and then c, thus missing the shorter path from s to b to c.
Intuitively, a path may start on long edges but then compensate along the way with short edges.

Formally, in the proof of correctness of the algorithm, the last statement about P does not hold anymore: even if the length of path P_v is smaller than the length of the subpath $s \to x \to y$, negative edges on the subpath $y \to v$ may now result in P being shorter than P_v.
Bigger problems in graphs with negative edges?

$\text{dist}(a) =$?
Bigger problems in graphs with negative edges?

1. $\text{dist}(v)$ goes to $-\infty$ for every v on the cycle (a, b, c, a)
2. **no** solution to shortest paths when negative cycles

\Rightarrow need to detect negative cycles
Today

1. Shortest paths in graphs with non-negative edge weights (Dijkstra’s algorithm)
 - Implementations
 - Graphs with negative edge weights: why Dijkstra fails

2. Single-source shortest paths (negative edges): Bellman-Ford
 - A DP solution
 - An alternative formulation of Bellman-Ford

3. All-pairs shortest paths (negative edges): Floyd-Warshall
Input: weighted directed graph $G = (V, E, w)$ with $w : E \rightarrow R$; a source (origin) vertex $s \in V$.

Output:

1. If G has a negative cycle reachable from s, answer “negative cycle in G”.
2. Else, compute for every $v \in V$
 2.1 the length of a shortest s-v path;
 2.2 a shortest s-v path.
Properties of shortest paths

Suppose the problem has a solution for an input graph.

- *Can there be negative cycles in the graph?*
- *Can there be positive cycles in the graph?*
- *Can the shortest paths contain positive cycles?*
- *Consider a shortest s-t path; are its subpaths shortest? In other words, does the problem exhibit optimal substructure?*
Key observation: if there are no negative cycles, a path cannot become shorter by traversing a cycle.

Fact 1.

If G has no negative cycles, then there is a shortest s-v path that is simple, thus has at most $n - 1$ edges.

Fact 2.

- The shortest paths problem exhibits optimal substructure.

Facts 1 and 2 suggest a DP solution.
Subproblems

Let

\[OPT(i, v) = \text{cost of a shortest } s-v \text{ path with at most } i \text{ edges} \]

Consider a shortest \(s-v \) path using at most \(i \) edges.

- If the path uses at most \(i - 1 \) edges, then
 \[
 OPT(i, v) = OPT(i - 1, v).
 \]

- If the path uses \(i \) edges, then
 \[
 OPT(i, v) = \min_{x : (x, v) \in E} \{ OPT(i - 1, x) + w(x, v) \}.
 \]
Recurrence

Let

\[OPT(i, v) = \text{cost of a shortest } s-v \text{ path using at most } i \text{ edges} \]

Then

\[
OPT(i, v) = \begin{cases}
0, & \text{if } i = 0, v = s \\
\infty, & \text{if } i = 0, v \neq s \\
\min \left\{ OPT(i - 1, v) \right. & \\
\left. \min_{x : (x, v) \in E} \{ OPT(i - 1, x) + w(x, v) \} \right\}, & \text{if } i > 0
\end{cases}
\]
$n \times n$ dynamic programming table M such that $M[i, v] = OPT(i, v)$.

Bellman-Ford($G = (V, E, w), s \in V$)

for $v \in V$ do
 $M[0, v] = \infty$
end for

$M[0, s] = 0$

for $i = 1, \ldots, n - 1$ do
 for $v \in V$ (in any order) do
 $M[i, v] = \min \left\{ M[i - 1, v], \min_{x:(x,v)\in E} \left\{ M[i - 1, x] + w(x, v) \right\} \right\}$
 end for
end for
Running time & Space

- **Running time**: $O(nm)$

- **Space**: $\Theta(n^2)$ — can be improved (*coming up*)

To reconstruct actual shortest paths, also keep array $prev$ of size n such that

$$prev[v] = \text{predecessor of } v \text{ in current shortest } s-v \text{ path.}$$
Compute shortest $s-v$ paths in the graph below, for all $v \in V$.

![Graph Image]
Only need two rows of M at all times.

Actually, only need one (see Remark 1)! Thus drop the index i from $M[i, v]$ and only use it as a counter for $\#$repetitions.

$$M[v] = \min \left\{ M[v], \min_{x: (x, v) \in E} \{ M[x] + w(x, v) \} \right\}$$

Remark 1.

Throughout the algorithm, $M[v]$ is the length of some $s-v$ path. After i repetitions, $M[v]$ is no larger than the length of the current shortest $s-v$ path with at most i edges.

Early termination condition: if at some iteration i no value in M changed, then stop (*why?*)
An alternative way to view Bellman-Ford

Let $P = (s = v_0, v_1, v_2, \ldots, v_k = v)$ be a shortest s-v path.

Then P can contain at most $n - 1$ edges.

How can we correctly compute $\text{dist}(v)$ on this path?
Key observations about subroutine $\text{Update}(u, v)$

Recall subroutine Update from Dijkstra’s algorithm:

$$\text{Update}(u, v) : \text{dist}(v) = \min\{\text{dist}(v), \text{dist}(u) + w(u, v)\}$$

Fact 3.

*Suppose u is the last node before v on the shortest s-v path, and suppose $\text{dist}(u)$ has been correctly set. The call $\text{Update}(u, v)$ returns the correct value for $\text{dist}(v)$.***

Fact 4.

No matter how many times $\text{Update}(u, v)$ is performed, it will never make $\text{dist}(v)$ too small. That is, Update is a safe operation: performing few extra updates can’t hurt.
Suppose we update the edges on the shortest path P in the order they appear on the path (though not necessarily consecutively). Hence we update

$$(s, v_1), (v_1, v_2), (v_2, v_3), \ldots, (v_{k-1}, v).$$

This sequence of updates correctly computes $dist(v_1), dist(v_2), \ldots, dist(v)$ (by induction and Fact 3).

How can we guarantee that this specific sequence of updates occurs?
Consider the shortest s-b path, which uses edges $(s, a), (a, b)$.

How can we guarantee that our algorithm will update these two edges in this order? (More updates in between are allowed.)
Update all m edges in the graph, $n - 1$ times in a row!

- By Fact 4, it is ok to update an edge several times in between.
- All we need is to update the edges on the path in this particular order. This is guaranteed if we update all edges $n - 1$ times in a row.
We will use Initialize and Update from Dijkstra’s algorithm.

Initialize(G, s)
 \[\text{for } v \in V \text{ do}\]
 \[\text{dist}[v] = \infty\]
 \[\text{prev}[v] = NIL\]
 \[\text{end for}\]
 \[\text{dist}[s] = 0\]

Update(u, v)
 \[\text{if } \text{dist}[v] > \text{dist}[u] + w(u, v) \text{ then}\]
 \[\text{dist}[v] = \text{dist}[u] + w(u, v)\]
 \[\text{prev}[v] = u\]
 \[\text{end if}\]
Bellman-Ford

\[
\text{Bellman-Ford}(G = (V, E, w), s)
\]

\[
\text{Initialize}(G, s)
\]

\[
\text{for } i = 1, \ldots, n - 1 \text{ do}
\]

\[
\text{for } (u, v) \in E \text{ do}
\]

\[
\text{Update}(u, v)
\]

\[
\text{end for}
\]

\[
\text{end for}
\]

Running time? Space?
Detecting negative cycles
Detecting negative cycles

1. \(\text{dist}(v) \) goes to \(-\infty\) for every \(v \) on the cycle.
2. Any shortest \(s-v \) path can have at most \(n - 1 \) edges.
3. Update all edges \(n \) times (instead of \(n - 1 \)): if \(\text{dist}(v) \) changes for any \(v \in V \), then there is a negative cycle.
1. Shortest paths in graphs with non-negative edge weights (Dijkstra’s algorithm)
 - Implementations
 - Graphs with negative edge weights: why Dijkstra fails

2. Single-source shortest paths (negative edges): Bellman-Ford
 - A DP solution
 - An alternative formulation of Bellman-Ford

3. All-pairs shortest paths (negative edges): Floyd-Warshall
All pairs shortest-paths

- **Input:** a directed, weighted graph $G = (V, E, w)$ with real edge weights
- **Output:** an $n \times n$ matrix D such that

$$D[i, j] = \text{length of shortest path from } i \text{ to } j$$
Solving all pairs shortest-paths

1. Straightforward solution: run Bellman–Ford once for every vertex \(O(n^2m)\) time.
2. Improved solution: Floyd-Warshall’s dynamic programming algorithm \(O(n^3)\) time.
Consider a shortest s-t path P.

This path uses some intermediate vertices: that is, if $P = (s, v_1, v_2, \ldots, v_k, t)$, then v_1, \ldots, v_k are intermediate vertices.

For simplicity, relabel the vertices in V as $\{1, 2, 3, \ldots, n\}$ and consider a shortest i-j path where intermediate vertices may only be from $\{1, 2, \ldots, k\}$.

Goal: compute the length of a shortest i-j path for every pair of vertices (i, j), using $\{1, 2, \ldots, n\}$ as intermediate vertices.
Rename \{s, a, b, c\} as \{1, 2, 3, 4\}
Examples of shortest paths

Shortest \((1, 2)\)-path using {} or \{1\} is \(P\).
Shortest \((1, 2)\)-path using \{1,2,3,4\} is \(P\).

Shortest \((1, 3)\)-path using {} or \{1\} is \(P'\).
Shortest \((1, 3)\)-path using \{1,2\} or \{1,2,3\} is \(P_1\).
Shortest \((1, 3)\)-path using \{1,2,3,4\} is \(P_1\).
Consider a shortest i-j path P where intermediate nodes may only be from the set of nodes $\{1, 2, \ldots, k\}$.

Fact: any subpath of P must be shortest itself.
A useful observation

Focus on the last node k from the set $\{1, 2, \ldots, k\}$. Either

1. P completely avoids k: then a shortest i-j path with intermediate nodes from $\{1, \ldots, k\}$ is the same as a shortest i-j path with intermediate nodes from $\{1, \ldots, k - 1\}$.

2. Or, k is an intermediate node of P.

Decompose P into an i-k subpath P_1 and a k-j subpath P_2.

i. P_1, P_2 are shortest subpaths themselves.
ii. All intermediate nodes of P_1, P_2 are from $\{1, \ldots, k - 1\}$.
Subproblems

Let

\[OPT_k(i, j) = \text{cost of shortest } i - j \text{ path } P \text{ using} \]
\[\{1, \ldots, k\} \text{ as intermediate vertices} \]

1. Either \(k \) does not appear in \(P \), hence

\[OPT_k(i, j) = OPT_{k-1}(i, j) \]

2. Or, \(k \) appears in \(P \), hence

\[OPT_k(i, j) = OPT_{k-1}(i, k) + OPT_{k-1}(k, j) \]
Hence

\[
OPT_k(i, j) = \begin{cases}
 w(i, j), & \text{if } k = 0 \\
 \min \begin{cases}
 OPT_{k-1}(i, j) \\
 OPT_{k-1}(i, k) + OPT_{k-1}(k, j)
 \end{cases}, & \text{if } k \geq 1
\end{cases}
\]

We want \(OPT_n(i, j) \).

Time/space requirements?
Floyd-Warshall on example graph

Let $D_k[i, j] = OPT_k(i, j)$.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>4</th>
<th>5</th>
<th>∞</th>
</tr>
</thead>
<tbody>
<tr>
<td>∞</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>∞</td>
<td>2</td>
<td>0</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

$D_0 =

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>4</th>
<th>5</th>
<th>∞</th>
</tr>
</thead>
<tbody>
<tr>
<td>∞</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>∞</td>
<td>2</td>
<td>0</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

$D_1 =

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>4</th>
<th>5</th>
<th>∞</th>
</tr>
</thead>
<tbody>
<tr>
<td>∞</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>∞</td>
<td>2</td>
<td>0</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

$D_2 =

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>4</th>
<th>3</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>∞</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>∞</td>
<td>2</td>
<td>0</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

$D_3 =

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>4</th>
<th>3</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>∞</td>
<td>0</td>
<td>-1</td>
<td>-2</td>
<td></td>
</tr>
<tr>
<td>∞</td>
<td>2</td>
<td>0</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
A single \(n \times n \) dynamic programming table \(D \), initialized to \(w(i, j) \) (the adjacency matrix of \(G \)).

Let \(\{1, \ldots, k\} \) be the set of intermediate nodes that may be used for the shortest \(i-j \) path.

After the \(k \)-th iteration, \(D[i, j] \) contains the length of some \(i-j \) path that is no larger than the length of the shortest \(i-j \) path using \(\{1, \ldots, k\} \) as intermediate nodes.
The Floyd-Warshall algorithm

Floyd-Warshall\((G = (V, E, w))\)

\[
\text{for } k = 1 \text{ to } n \text{ do}
\]
\[
\text{for } i = 1 \text{ to } n \text{ do}
\]
\[
\text{for } j = 1 \text{ to } n \text{ do}
\]
\[
D[i, j] = \min(D[i, j], D[i, k] + D[k, j])
\]
\[
\text{end for}
\]
\[
\text{end for}
\]
\[
\text{end for}
\]

- Running time: \(O(n^3)\)
- Space: \(\Theta(n^2)\)