
Analysis of Algorithms, I
CSOR W4231.002

Eleni Drinea
Computer Science Department

Columbia University

Minimum spanning trees: Prim’s and Kruskal’s algorithms

Outline

1 Minimum Spanning Trees (MSTs)
Prim’s algorithm
Kruskal’s algorithm
More MST algorithms

Today

1 Minimum Spanning Trees (MSTs)
Prim’s algorithm
Kruskal’s algorithm
More MST algorithms

The problem

Motivation: build the cheapest communication network over a
set of locations.

Input: a weighted, undirected graph G = (V,E,w)

Output: a subset of edges ET ⊆ E such that

1. the graph T = (V,ET) is connected;

2.
∑

e∈ET

w(e) is minimal.

Minimum weight Spanning Trees (MST)

Remark 1.

The graph T = (V,ET) is a tree: if there is a cycle, remove any
edge from the cycle and obtain a connected graph with less cost.

Definition 1 (Spanning tree of a graph G = (V,E)).

A tree that spans all the nodes in V .

Output (restated): a minimum weight spanning tree of G.

Remarks

I Brute-force won’t work: even simple graphs have many
spanning trees—how many in a simple cycle?

I #spanning trees in the complete graph on n vertices: nn−2

The cut property

Definition 2 (Cut).

A cut (S, V − S) is a bipartition of the vertices.

Claim 1 (Cut property).

Assume all edge weights are distinct. Let S ⊂ V (S 6= ∅). Let e
be the minimum-weight edge with one endpoint in S and the
other in V − S. Then every MST contains e.

Remark 2.

The assumption of distinct edge weights is just for the purposes
of the analysis; we will show how to remove it later.

Proof of the cut property

Notation: w(T) =
∑

e∈ET

w(e)

We will derive a contradiction by using an exchange argument.

I Let T ′ be a minimum-weight spanning tree that does not
contain e = (u, v).

I Then there must be some other path P in T ′ from u to v.

I Starting at u, follow the vertices of P : since (u, v) crosses
from S to V − S, there must be some first vertex
v′ ∈ V − S on P . Let u′ be the last vertex before it in S.

I Then e′ = (u′, v′) ∈ ET ′ and e′ crosses between S, V − S.

Proof of the cut property (cont’d)

Exchange e with e′ to obtain the set of edges

ET = ET ′ + {e} − {e′}.

T is a spanning tree:

I T is connected: any path in T ′ that used e′ = (u′, v′) is
rerouted to follow P from u′ to u, (u, v) and P from v to v′.

I T is acyclic (why?).

Since both e′ and e cross between S and V − S but e is the
lightest edge with this property, w(e) < w(e′). Thus

w(T) < w(T ′).

Using the cut property to design MST algorithms

The cut property says: construct MST greedily by taking the
lightest edge across two regions not yet connected.

Generic-MST(G = (V,E,w))

ET = ∅ // the set of edges that will form our MST
while |ET | ≤ n− 1 do

Pick S ⊆ V s.t. no edge in ET crosses between S, V − S
Let e ∈ E be a lightest edge that crosses between S, V −S
ET = ET ∪ {e}

end while

Prim’s algorithm

In Prim’s algorithm, the edges in ET always form a subtree
which is a partial MST and S is chosen to be the set of this
subtree’s vertices.

In other words:

1. Start with a root node s.

2. Greedily grow a tree outward from s by adding the node
that can be attached as cheaply as possible at every step.

Detailed description of Prim’s algorithm

1. ET = ∅
2. Maintain a set S ⊆ V on which a spanning tree has been

constructed so far. Initially, S = {s}.
3. In each iteration, update

3.1 S = S ∪ {v}, where v is the vertex in V − S that minimizes
the attachment cost:

min
u∈S

(u,v)∈E

wuv.

3.2 ET = ET ∪ {e}

Example graph

2

3

5

1 6

8

4 7 9

8 3

5

1

10

12

4

92

7

6

11

Prim’s MST for example graph (letters indicate the
order in which edges were added)

2

3

5

1 6

8

4 7 9

8 3

5

14

2

7

6 a

b

c

d

e f

g

h

Prim’s: correctness

Follows directly from the Cut property.

Let S be the set of vertices on which a partial MST has been
constructed.
At every iteration an edge (u, v) is added such that

I u ∈ S, v ∈ V − S;

I (u, v) is the lightest edge that crosses between S and V −S.

Implementing Prim’s algorithm

Similarly to Dijkstra’s algorithm,

I store every node v ∈ V − S in a priority queue Q, e.g.,
implemented as a binary min-heap (key= weight of the
lightest edge between some node in S and v). Initially,
S = {s}.

I maintain two arrays
I dist[v]: stores the weight of the lightest edge between v and

any vertex in S (in Dijkstra, it stored a conservative
overestimate of the distance of v from the source s)

I prev[v]: stores the node responsible for adding v to S

Pseudocode: how does this compute T = (V,ET)?

Prim(G = (V,E,w), s)

for u ∈ V do
dist[v] =∞; prev[v] = NIL

end for
dist[s] = 0
Q = {V ; dist}
S = ∅
while Q 6= ∅ do

u = ExtractMin(Q)
S = S ∪ {u}
for (u, v) ∈ E and v ∈ V − S do

if dist[v] > w(u, v) then
dist[v] = w(u, v)
prev[v] = u
DecreaseKey(Q, v)

end if
end for

end while

Further implementations of Prim’s algorithm

Notation: |V | = n, |E| = m

Insert/

Implementation ExtractMin DecreaseKey Time

Array O(n) O(1) O(n2)
Binary heap O(log n) O(log n) O((n + m) log n)

d-ary heap O(d log n) O(log n) O((nd + m) logn
log d)

Fibonacci heap O(log n) O(1) amortized O(n log n + m)

I Optimal choice for d ≈ m/n (the average degree of the graph)

I d-ary heap works well for both sparse and dense graphs

I If m = n1+x, what is the running time of Prim’s algorithm
using a d-ary heap?

I Amortized analysis: coming up in the next lecture

Kruskal’s algorithm

Short description: at every step, add to ET the lightest edge
that does not create a cycle with the edges already in ET .

Thus, at all times, ET is a subset of an MST.

Alternative view: merging partial trees

Initially, every vertex forms its own trivial tree (no edges).
Maintain a forest of trees at all times.

Let T (v) be the tree where vertex v belongs.

1. Initialize ET = ∅
2. Sort the edges by increasing weight.

3. For every edge e = (u, v) in increasing order of weight:
I If u and v belong to the same tree, discard e.
I Else

I ET = ET ∪ {e};
I merge T (u), T (v) into a single tree.

4 Need a data structure that allows

1. to check if u, v belong to the same tree;

2. for updates to reflect the merging of two trees into one.

Example graph

2

3

5

1 6

8

4 7 9

8 3

5

1

10

12

4

92

7

6

11

Kruskal’s MST for example graph (letters indicate the
order in which edges were added)

2

3

5

1 6

8

4 7 9

8 3

5

14

2

7

6 f

g

b

d

h c

e

a

Correctness

I Let (u, v) be the edge added at the current iteration.

I Let S be the set of nodes that have a path to u by edges in
A just before (u, v) is added; then u ∈ S but v 6∈ S.

I Also, (u, v) must be the first edge between S and V − S
encountered so far: otherwise, if such an edge was
encountered before, it would have been added to A
since its inclusion would not cause a cycle.

⇒ (u, v) is the lightest edge that crosses between S and V − S

I By the Cut Property, (u, v) belongs to the MST.

Implementing Kruskal’s algorithm

Kruskal’s algorithm maintains a forest of trees at all times,
starting from n trivial trees (no edges).

Want a data structure that maintains a collection of disjoint
sets and supports operations:

1. MakeSet(u): Given an element u, create a new tree
containing only u. Target worst-case time: O(1)

2. Find(u): Given an element u, find which tree u belongs to.
Target worst-case time: O(log n)

3. Union(u, v): Merge the tree containing u and the tree
containing v into a single tree.
Target worst-case time: O(log n)

Pseudocode

Kruskal(G = (V,E,w))

ET = ∅
Sort(E) by w
for u ∈ V do MakeSet(u)
end for
for (u, v) ∈ E by increasing w do

if Find(u) 6= Find(v) then
ET = ET ∪ {(u, v)}
Union(u, v)

end if
end for

Running time analysis

I Sorting: O(m logm) = O(m log n)

I n Makeset() operations: O(n)

I 2m Find() operations: 2m ·O(log n)

I ≤ n− 1 Union() operations: n ·O(log n)

Running time: O(m log n)

When is it safe to not include an edge to the MST?

Fact 3 (The Cycle Property).

Assume that all edge costs are distinct. Let C be any cycle in
G, and let edge (u, v) be the heaviest edge in C. Then e does
not belong to any MST of G.

Proof of the cycle property

I Let T be a spanning tree that contains e. We want to show
that T is not optimal.

I To this end, we will exchange e for some e′ to get a
spanning tree T ′ with less weight.

I First, delete e from T ; T is now partitioned into two
components: the set S containing u and the set V − S
containing v.

⇒ We want an edge e′ with one endpoint in S and another in
V − S so as to reconnect them.

Proof of the cycle property (cont’d)

I We can find such an edge by following the cycle C.

I Consider the edges of C except for e: they form a path
from u to v.

I So if we start at u, following this path, at some point there
is an edge e′ that crosses from S to V − S. Construct

ET ′ = ET − {e}+ {e′}.

I Now T ′ is connected and has n− 1 edges. Moreover, since e
is the heaviest edge in the cycle

w(T ′) < w(T).

More MST algorithms

Fact 3 yields yet another algorithm for finding an MST.

Reverse-Delete(G = (V,E,w))

I Start with the full graph.

I Sort the edges in decreasing weight.

I Repeatedly delete edges in order of decreasing weight, so
long as the graph does not become disconnected.

More MST algorithms: combine the Cut property (to add
edges) and the Cycle property (to eliminate edges).

4 Such algorithms may be subtle to implement.

Removing the assumption of unequal edge weights

I Suppose some edges have equal weights.

I Slightly perturb all edge weights by different, tiny
amounts.

⇒ All edge weights are now distinct.

I Apply the algorithms discussed in the previous sections.

Remark 3.

Perturbations serve as tie-breakers: edges whose weights differed
before still have the same relative order.

	Minimum Spanning Trees (MSTs)
	Prim's algorithm
	Kruskal's algorithm
	More MST algorithms

