Minimum spanning trees: Prim’s and Kruskal’s algorithms
Minimum Spanning Trees (MSTs)
- Prim’s algorithm
- Kruskal’s algorithm
- More MST algorithms
1 Minimum Spanning Trees (MSTs)
 - Prim’s algorithm
 - Kruskal’s algorithm
 - More MST algorithms
The problem

Motivation: build the cheapest communication network over a set of locations.

Input: a weighted, undirected graph $G = (V, E, w)$

Output: a subset of edges $E_T \subseteq E$ such that

1. the graph $T = (V, E_T)$ is connected;
2. $\sum_{e \in E_T} w(e)$ is minimal.
Remark 1.

The graph $T = (V, E_T)$ is a tree: if there is a cycle, remove any edge from the cycle and obtain a connected graph with less cost.

Definition 1 (Spanning tree of a graph $G = (V, E)$).

A tree that spans all the nodes in V.

Output (restated): a minimum weight spanning tree of G.

Remarks

- Brute-force won’t work: even simple graphs have many spanning trees—how many in a simple cycle?
- #spanning trees in the complete graph on n vertices: n^{n-2}
The cut property

Definition 2 (Cut).

A cut \((S, V - S)\) is a bipartition of the vertices.

Claim 1 (Cut property).

Assume all edge weights are distinct. Let \(S \subset V \ (S \neq \emptyset)\). Let \(e\) be the minimum-weight edge with one endpoint in \(S\) and the other in \(V - S\). Then every MST contains \(e\).

Remark 2.

The assumption of distinct edge weights is just for the purposes of the analysis; we will show how to remove it later.
Proof of the cut property

Notation: \(w(T) = \sum_{e \in E_T} w(e) \)

We will derive a contradiction by using an exchange argument.

- Let \(T' \) be a minimum-weight spanning tree that does not contain \(e = (u, v) \).
- Then there must be some other path \(P \) in \(T' \) from \(u \) to \(v \).
- Starting at \(u \), follow the vertices of \(P \): since \((u, v) \) crosses from \(S \) to \(V - S \), there must be some first vertex \(v' \in V - S \) on \(P \). Let \(u' \) be the last vertex before it in \(S \).
- Then \(e' = (u', v') \in E_T \) and \(e' \) crosses between \(S, V - S \).
Exchange e with e' to obtain the set of edges

$$E_T = E_{T'} + \{e\} - \{e'\}.$$

T is a spanning tree:

- T is connected: any path in T' that used $e' = (u', v')$ is rerouted to follow P from u' to u, (u, v) and P from v to v'.
- T is acyclic (why?).

Since both e' and e cross between S and $V - S$ but e is the lightest edge with this property, $w(e) < w(e')$. Thus

$$w(T) < w(T').$$
The cut property says: construct MST \textbf{greedily} by taking the \textbf{lightest} edge across two regions not yet connected.

\begin{verbatim}
Generic-MST(G = (V, E, w))
 \[E_T = \emptyset \] // the set of edges that will form our MST
 \textbf{while} \ |E_T| \leq n - 1 \ \textbf{do}
 \textbf{Pick} \ S \subseteq V \ \text{s.t. no edge in} \ E_T \ \text{crosses between} \ S, \ V - S
 \text{Let} \ e \in E \ \text{be a lightest edge that crosses between} \ S, \ V - S
 \[E_T = E_T \cup \{e\} \]
 \textbf{end while}
\end{verbatim}
In Prim’s algorithm, the edges in E_T always form a subtree which is a partial MST and S is chosen to be the set of this subtree’s vertices.

In other words:

1. Start with a root node s.
2. **Greedily** grow a tree outward from s by adding the node that can be attached as cheaply as possible at every step.
1. $E_T = \emptyset$

2. Maintain a set $S \subseteq V$ on which a spanning tree has been constructed so far. Initially, $S = \{s\}$.

3. In each iteration, update

 3.1 $S = S \cup \{v\}$, where v is the vertex in $V - S$ that minimizes the attachment cost:

 $$\min_{u \in S} \{w_{uv} \mid (u,v) \in E\}$$

 3.2 $E_T = E_T \cup \{e\}$
Example graph
Prim’s MST for example graph (letters indicate the order in which edges were added)
Follows directly from the Cut property.

Let S be the set of vertices on which a partial MST has been constructed.
At every iteration an edge (u, v) is added such that
- $u \in S$, $v \in V - S$;
- (u, v) is the lightest edge that crosses between S and $V - S$.
Implementing Prim’s algorithm

Similarly to Dijkstra’s algorithm,

- store every node $v \in V - S$ in a priority queue Q, e.g., implemented as a binary min-heap (key= weight of the lightest edge between some node in S and v). Initially, $S = \{s\}$.

- maintain two arrays
 - $dist[v]$: stores the weight of the lightest edge between v and any vertex in S (in Dijkstra, it stored a conservative overestimate of the distance of v from the source s)
 - $prev[v]$: stores the node responsible for adding v to S
Prim\((G = (V, E, w), s)\)

\[\text{for } u \in V \text{ do}\]
\[\quad \text{dist}[v] = \infty; \text{prev}[v] = \text{NIL}\]
\[\text{end for}\]
\[\text{dist}[s] = 0\]
\[Q = \{V; \text{dist}\}\]
\[S = \emptyset\]
\[\text{while } Q \neq \emptyset \text{ do}\]
\[\quad u = \text{ExtractMin}(Q)\]
\[\quad S = S \cup \{u\}\]
\[\quad \text{for } (u, v) \in E \text{ and } v \in V - S \text{ do}\]
\[\quad \quad \text{if } \text{dist}[v] > w(u, v) \text{ then}\]
\[\quad \quad \quad \text{dist}[v] = w(u, v)\]
\[\quad \quad \quad \text{prev}[v] = u\]
\[\quad \quad \quad \text{DecreaseKey}(Q, v)\]
\[\quad \quad \text{end if}\]
\[\quad \text{end for}\]
\[\text{end while}\]
Further implementations of Prim’s algorithm

Notation: \(|V| = n, |E| = m \)

<table>
<thead>
<tr>
<th>Implementation</th>
<th>ExtractMin</th>
<th>Insert/DecreaseKey</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Array</td>
<td>(O(n))</td>
<td>(O(1))</td>
<td>(O(n^2))</td>
</tr>
<tr>
<td>Binary heap</td>
<td>(O(\log n))</td>
<td>(O(\log n))</td>
<td>(O((n + m) \log n))</td>
</tr>
<tr>
<td>(d)-ary heap</td>
<td>(O(d \log n))</td>
<td>(O(\log n))</td>
<td>(O((nd + m) \frac{\log n}{\log d}))</td>
</tr>
<tr>
<td>Fibonacci heap</td>
<td>(O(\log n))</td>
<td>(O(1)) amortized</td>
<td>(O(n \log n + m))</td>
</tr>
</tbody>
</table>

- Optimal choice for \(d \approx m/n \) (the *average* degree of the graph)
- \(d \)-ary heap works well for both sparse and dense graphs
 - *If* \(m = n^{1+x} \), *what is the running time of Prim’s algorithm using a \(d \)-ary heap?*
- **Amortized** analysis: *coming up in the next lecture*
Short description: at every step, add to E_T the *lightest* edge that does not create a cycle with the edges already in E_T.

Thus, at all times, E_T is a subset of an MST.
Initially, every vertex forms its own trivial tree (no edges). Maintain a forest of trees at all times.

Let $T(v)$ be the tree where vertex v belongs.

1. Initialize $E_T = \emptyset$
2. Sort the edges by increasing weight.
3. For every edge $e = (u, v)$ in increasing order of weight:
 - If u and v belong to the same tree, discard e.
 - Else
 - $E_T = E_T \cup \{e\}$;
 - merge $T(u)$, $T(v)$ into a single tree.

△ Need a data structure that allows
1. to check if u, v belong to the same tree;
2. for updates to reflect the merging of two trees into one.
Example graph
Kruskal’s MST for example graph (letters indicate the order in which edges were added)
Correctness

Let \((u, v)\) be the edge added at the current iteration.

Let \(S\) be the set of nodes that have a path to \(u\) by edges in \(A\) just before \((u, v)\) is added; then \(u \in S\) but \(v \notin S\).

Also, \((u, v)\) must be the first edge between \(S\) and \(V - S\) encountered so far: otherwise, if such an edge was encountered before, it would have been added to \(A\) since its inclusion would not cause a cycle.

\(\Rightarrow\) \((u, v)\) is the lightest edge that crosses between \(S\) and \(V - S\).

By the Cut Property, \((u, v)\) belongs to the MST.
Kruskal’s algorithm maintains a forest of trees at all times, starting from \(n \) trivial trees (no edges).

Want a data structure that maintains a collection of disjoint sets and supports operations:

1. \textbf{MakeSet}(u): Given an element \(u \), create a new tree containing only \(u \). Target worst-case time: \(O(1) \)

2. \textbf{Find}(u): Given an element \(u \), find which tree \(u \) belongs to. Target worst-case time: \(O(\log n) \)

3. \textbf{Union}(u, v): Merge the tree containing \(u \) and the tree containing \(v \) into a single tree. Target worst-case time: \(O(\log n) \)
Pseudocode

Kruskal\((G = (V, E, w))\)

\[E_T = \emptyset \]

Sort\((E)\) by \(w\)

for \(u \in V\) do MakeSet\((u)\)
end for

for \((u, v)\) \(\in E\) by increasing \(w\) do
 if Find\((u) \neq\) Find\((v)\) then
 \[E_T = E_T \cup \{(u, v)\} \]
 Union\((u, v)\)
 end if
end for
Running time analysis

- Sorting: $O(m \log m) = O(m \log n)$
- n Makeset() operations: $O(n)$
- $2m$ Find() operations: $2m \cdot O(\log n)$
- $\leq n - 1$ Union() operations: $n \cdot O(\log n)$

Running time: $O(m \log n)$
Fact 3 (The Cycle Property).

Assume that all edge costs are distinct. Let C be any cycle in G, and let edge (u,v) be the heaviest edge in C. Then e does not belong to any MST of G.
Let T be a spanning tree that contains e. We want to show that T is not optimal.

To this end, we will exchange e for some e' to get a spanning tree T' with less weight.

First, delete e from T; T is now partitioned into two components: the set S containing u and the set $V - S$ containing v.

We want an edge e' with one endpoint in S and another in $V - S$ so as to reconnect them.
We can find such an edge by following the cycle C.

Consider the edges of C except for e: they form a path from u to v.

So if we start at u, following this path, at some point there is an edge e' that crosses from S to $V - S$. Construct

$$E_{T'} = E_T - \{e\} + \{e'\}.$$

Now T' is connected and has $n - 1$ edges. Moreover, since e is the heaviest edge in the cycle

$$w(T') < w(T).$$
Fact 3 yields yet another algorithm for finding an MST.

Reverse-Delete$(G = (V, E, w))$

- Start with the full graph.
- Sort the edges in decreasing weight.
- Repeatedly delete edges in order of decreasing weight, so long as the graph does not become disconnected.

More MST algorithms: combine the Cut property (to add edges) and the Cycle property (to eliminate edges).

△ Such algorithms may be subtle to implement.
Suppose some edges have equal weights.

Slightly perturb all edge weights by different, tiny amounts.

⇒ All edge weights are now distinct.

Apply the algorithms discussed in the previous sections.

Remark 3.

Perturbations serve as tie-breakers: edges whose weights differed before still have the same relative order.