Strongly connected components,
single-origin shortest paths in weighted graphs
Outline

1. Applications of DFS
 - Strongly connected components

2. Shortest paths in graphs with non-negative edge weights (Dijkstra’s algorithm)
 - Correctness
 - Implementations
Finding your way in a maze

Depth-first search (DFS): starting from a vertex s, explore the graph as deeply as possible, then backtrack

1. Try the first edge out of s, towards some node v.
2. Continue from v until you reach a **dead end**, that is a node whose neighbors have all been explored.
3. **Backtrack** to the first node with an unexplored neighbor and repeat 2.

Remark: DFS answers s-t connectivity
Directed graphs: classification of edges

DFS constructs a forest of trees.

Graph edges that do not belong to the DFS tree(s) may be

1. **forward**: from a vertex to a *descendant* (other than a *child*)
2. **back**: from a vertex to an *ancestor*
3. **cross**: from right to left (no ancestral relation), that is
 - from tree to tree
 - between nodes in the same tree but on different branches
On the time intervals of vertices u, v

If we use an explicit stack, then
- $start(u)$ is the time when u is pushed in the stack
- $finish(u)$ is the time when u is popped from the stack (that is, all of its neighbors have been explored).

Intervals $[start(u), finish(u)]$ and $[start(v), finish(v)]$ either
- contain each other (u is an ancestor of v or vice versa); or
- they are disjoint.
Classifying edges using time

1. Edge \((u, v) \in E\) is a back edge in a DFS tree if and only if
 \[\text{start}(v) < \text{start}(u) < \text{finish}(u) < \text{finish}(v)\].

2. Edge \((u, v) \in E\) is a forward edge if
 \[\text{start}(u) < \text{start}(v) < \text{finish}(v) < \text{finish}(u)\].

3. Edge \((u, v) \in E\) is a cross edge if
 \[\text{start}(v) < \text{finish}(v) < \text{start}(u) < \text{finish}(u)\].
1. Applications of DFS
 - Strongly connected components

2. Shortest paths in graphs with non-negative edge weights (Dijkstra’s algorithm)
 - Correctness
 - Implementations
Exploring the connectivity of a graph

- **Undirected** graphs: find all connected components

- **Directed** graphs: find all strongly connected components (SCCs)
 - $SCC(u) =$ set of nodes that are reachable from u and have a path back to u
 - SCCs provide a *hierarchical* view of the connectivity of the graph:
 - on a top level, the meta-graph of SCCs has a useful and simple structure (*coming up*);
 - each meta-vertex of this graph is a fully connected subgraph that we can further explore.
1. Run \texttt{BFS}(u); the resulting tree T consists of the set of nodes to which there is a path \textbf{from} u.

2. Define G^r as the \textbf{reverse} graph, where edge (i, j) becomes edge (j, i).

3. Run \texttt{BFS}(u) in G^r; the resulting BFS tree T' consists of the set of nodes that have a path \textbf{to} u.

4. The common vertices in T, T' compose the strongly connected component of u.

What if we want \textit{all} the SCCs of the graph?
Consider the meta-graph of all SCCs of G.

- Make a (super)vertex for every SCC.
- Add a (super)edge from SCC C_i to SCC C_j if there is an edge from some vertex u of C_i to some vertex v of C_j.

What kind of graph is the meta-graph of SCC’s?
Consider the meta-graph of all SCCs of G.

- Make a (super)vertex for every SCC.
- Add a (super)edge from SCC C_i to SCC C_j if there is an edge from some vertex u of C_i to some vertex v of C_j.

This graph is a DAG.
Is there an SCC we could process first?

Suppose we had a sink SCC of G, that is, an SCC with no outgoing edges.

1. What will DFS discover starting at a node of a sink SCC?
2. How do we find a node that for sure lies in a sink SCC?
3. How do we continue to find all other SCCs?
Fact 1.

The node assigned the largest finish time when we run $\text{DFS}(G)$ belongs to a source SCC in G.

Example: v_5 belongs to source SCC C_2.

Proof.

We will use Lemma 2 below. Let G be a directed graph. The meta-graph of its SCCs is a DAG. For an SCC C, let

$$\text{finish}(C) = \max_{v \in C} \text{finish}(v)$$

Example: $\text{finish}(C_1) = \text{finish}(v_1) = 8$.

Lemma 2.

Let C_i, C_j be SCCs in G. Suppose there is an edge $(u, v) \in E$ such that $u \in C_i$ and $v \in C_j$. Then $\text{finish}(C_i) > \text{finish}(C_j)$.
Fact 1 provides a direct way to find a node in a source SCC of G: pick the node with largest finish.

But we want a node in a sink SCC of G!

Consider G^r, the graph where the edges of G are reversed. How do the SCCs of G and G^r compare?

Run DFS on G^r: the node with the largest finish comes from a source SCC of G^r (Fact 1). This is a sink SCC of G!
Using this observation to find all SCCs

We now know how to find a sink SCC in G.

1. Run $\text{DFS}(G^r)$; compute finish times.
2. Run $\text{DFS}(G)$ starting from the node with the largest finish: the nodes in the resulting tree T form a sink SCC in G.

How do we find all remaining SCCs?

- Remove T from G; let G' be the resulting graph.
- The meta-graph of SCCs of G' is a DAG, hence it has at least one sink SCC.
- Apply the procedure above recursively on G'.
Algorithm for finding SCCs in directed graphs

\[\text{SCC}(G = (V, E)) \]

1. Compute \(G^r \).
2. Run \(\text{DFS}(G^r) \); compute \(\text{finish}(u) \) for all \(u \).
3. Run \(\text{DFS}(G) \) in decreasing order of \(\text{finish}(u) \).
4. Output the vertices of each tree in the DFS forest of line 3 as an SCC.

Remark 1.

1. Running time: \(O(n + m) \) — why?
2. Equivalently, we can (i) run \(\text{DFS}(G) \), compute \(\text{finish} \) times; (ii) run \(\text{DFS}(G^r) \) by decreasing order of \(\text{finish} \). Why?
A directed graph and its DFS forest with time intervals

(3,4) (2,5) (6,7) (1,8) (9,14) (10,13) (11,12)
DFS forest of G^r; nodes are considered by decreasing finish times
Let G be a directed graph. The meta-graph of its SCCs is a DAG.

For an SCC C, let

$$finish(C) = \max_{v \in C} finish(v)$$

Lemma 3.

Let C_i, C_j be SCCs in G. Suppose there is an edge $(u, v) \in E$ such that $u \in C_i$ and $v \in C_j$. Then $finish(C_i) > finish(C_j)$.
Proof of Lemma 2

There are two cases to consider:

1. \(\text{start}(u) < \text{start}(v) \) (DFS starts at \(C_i \))

 ▶ Before leaving \(u \), DFS will explore edge \((u, v) \).

 ▶ Since \(v \in C_j \), all of \(C_j \) will now be explored.

 ▶ All vertices in \(C_j \) will be assigned \textit{finish} times before DFS backtracks to \(u \) and assigns a \textit{finish} time to \(u \). Thus

\[
\text{finish}(C_j) < \text{finish}(u) \leq \text{finish}(C_i)
\]
2. $\text{start}(u) > \text{start}(v)$

Since there is no edge from C_j to C_i (DAG!), DFS will finish exploring C_j before it discovers u. Thus

\[
\text{finish}(C_j) < \text{start}(u) < \text{finish}(u) \\
\Rightarrow \text{finish}(C_j) < \text{finish}(C_i)
\]
Today

1. Applications of DFS
 - Strongly connected components

2. Shortest paths in graphs with non-negative edge weights (Dijkstra’s algorithm)
 - Correctness
 - Implementations
Edge weights represent *distances* (or time, cost, etc.)

Consider a path $P = (v_0, \ldots, v_k)$. The **length** of P is the sum of the weights of its edges:

$$w(P) = \sum_{i=0}^{k-1} w(v_i, v_{i+1}).$$

In weighted graphs, a **shortest path** from u to v is a path of **minimum** length among all paths from u to v.
Notation

- **s-t path**: a path from s to t.
- **$dist(s, t)$**: the length of the shortest s-t path;

 \[
 dist(s, t) = \begin{cases}
 \min_P w(P), & \text{if exists } s-t \text{ path} \\
 \infty, & \text{otherwise}
 \end{cases}
 \]
- **$dist(t)$**: the length of the shortest s-t path, when s is fixed.
- We will refer to $w(P)$ as the **weight** or **cost** or **length** of P.
Input:
- a weighted, directed graph $G = (V, E, w)$, where function $w : E \to R$ maps edges to real-valued weights;
- an origin vertex $s \in V$.

Output: for every vertex $v \in V$
1. the length of a shortest s-v path;
2. a shortest s-v path.
We can also solve

- **single-pair** shortest-path problem
- **single-destination** shortest-paths problem: find a shortest path from every vertex to a destination t
- **all-pairs** shortest-paths: find a shortest path between every pair of vertices
Input

- a weighted, directed graph $G = (V, E, w)$; function $w : E \rightarrow \mathbb{R}_+$ assigns non-negative real-valued weights to edges;
- an origin vertex $s \in V$.

Output: for every vertex $v \in V$

1. the length of a shortest s-v path;
2. a shortest s-v path.
Dijkstra’s algorithm (Input: $G = (V, E, w), s \in V$)

Output: arrays $dist, prev$ with n entries such that

1. $dist[v] =$ length of the shortest s-v path
2. $prev[v] =$ node before v on the shortest s-v path

At all times, maintain a set S of nodes for which the distance from s has been determined.

- Initially, $dist[s] = 0, S = \{s\}$.
- Each time, add to S the node $v \in V - S$ that
 1. has an edge from some node in S;
 2. minimizes the following quantity among all nodes $v \in V - S$

$$d(v) = \min_{u \in S: (u,v) \in E \{dist[u] + w_{uv}\}}$$

- Set $prev[v] = u$.
An example weighted directed graph
Dijkstra’s output for example graph

The distances (in parentheses) and reverse shortest paths.
Greedy principle: a local decision rule is applied at every step.

- Dijkstra’s algorithm is greedy: always form the shortest new $s-v$ path by first following a path to some node u in S, and then a single edge (u, v).

- Proof of optimality: it always stays ahead of any other solution; when a path to a node v is selected, that path is shorter than every other possible $s-v$ path.
Correctness of Dijkstra’s algorithm

At all times, the algorithm maintains a set S of nodes for which it has determined a shortest-path distance from s.

Claim 1.

Consider the set S at any point in the algorithm’s execution. For each u in S, the path P_u is a shortest s-u path.

Optimality of the algorithm follows from the claim (*why?*).
Proof of Claim 1

By induction on the size of S.

▶ **Base case**: $|S| = 1$, $\text{dist}(s) = 0$.

▶ **Hypothesis**: suppose the claim is true for $|S| = k$, that is, for every $u \in S$, P_u is a shortest s-u path.

▶ **Step**: let v be the $k + 1$-st node added to S. We want to show that P_v, which is P_u for some $u \in S$, followed by the edge (u, v), is a shortest s-v path.

Consider any other s-v path, call it P. P must leave S somewhere since $v \notin S$: let $y \neq v$ be the first node of P in $V - S$ and $x \in S$ the node before y in P. Since the algorithm added v in this iteration and not y, it must be that $d(v) \leq d(y)$. So just the subpath $s \to x \to y$ in P is at least as long as P_v! Hence so is P (*why?*).
Dijkstra-v1($G = (V, E, w), s \in V$)

Initialize(G, s)
$S = \{s\}$

while $S \neq V$ do
 Select a node $v \in V - S$ with at least one edge from S so that
 \[d(v) = \min_{u \in S, (u, v) \in E} \{dist[u] + w_{uv}\} \]
 $S = S \cup \{v\}$
 $dist[v] = d(v)$
 $prev[v] = u$
end while

Initialize(G, s)
for $v \in V$ do
 $dist[v] = \infty$
 $prev[v] = NIL$
end for
$dist[s] = 0$
Improved implementation (I)

Idea: Keep a conservative overestimate of the true length of the shortest s-v path in dist[v] as follows: when u is added to S, update dist[v] for all v with (u, v) ∈ E.

Dijkstra-v2(G = (V, E, w), s ∈ V)

Initialize(G, s)
S = ∅

while S ¥≠ V do
 Pick u so that dist[u] is minimum among all nodes in V − S
 S = S ∪ {u}
 for (u, v) ∈ E do
 Update(u, v)
 end for
end while

Update(u, v)
if dist[v] > dist[u] + w uv then
 dist[v] = dist[u] + w uv
 prev[v] = u
end if
Priority queues and binary heaps

- **Priority queue**: a priority queue is a data structure for maintaining a set S of n elements, each with an associated value called a *key*.

- **Operations** supported by a **min-priority queue** Q:
 1. `BuildQueue(\{S; keys\})`: builds a min-priority queue
 2. `Insert(Q, x)`: insert element x into Q
 3. `Extract-min(Q)`: extract the minimum element from Q
 4. `Decrease-key(Q, x, k)`: decrease the *key* for x to a new (smaller) value k

- We can implement a min-priority queue as a **binary min-heap**. Then each of the four operations above requires time $O(n), O(\log n), O(\log n), O(\log n)$ respectively.

 See Chapter 6 in your textbook for more details on binary heaps.
Improved implementation (II): binary min-heap

Idea: Use a priority queue implemented as a binary min-heap: store vertex \(u \) with key \(\text{dist}[u] \). Required operations: \text{Insert}, \text{ExtractMin}; \text{DecreaseKey} for \text{Update}; each takes \(O(\log n) \) time.

\[
\text{Dijkstra-v3}(G = (V, E, w), s \in V) \\
\text{Initialize}(G, s) \\
Q = \text{BuildQueue}\{V; dist\} \\
S = \emptyset \\
\text{while } Q \neq \emptyset \text{ do} \\
\hspace{1em} \text{ExtractMin}(Q) \\
\hspace{1em} \text{S} = \text{S} \cup \{u\} \\
\hspace{1em} \text{for } (u, v) \in E \text{ do} \\
\hspace{2em} \text{Update}(u, v) \\
\text{end for} \\
\text{end while}
\]

Running time: \(O(n \log n + m \log n) = O(m \log n) \)

When is \text{Dijkstra-v3()} better than \text{Dijkstra-v2()}?
Further implementations of Dijkstra’s algorithm

Notation: \(|V| = n, |E| = m\)

<table>
<thead>
<tr>
<th>Implementation</th>
<th>ExtractMin</th>
<th>Insert/DecreaseKey</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Array</td>
<td>(O(n))</td>
<td>(O(1))</td>
<td>(O(n^2))</td>
</tr>
<tr>
<td>Binary heap</td>
<td>(O(\log n))</td>
<td>(O(\log n))</td>
<td>(O((n + m) \log n))</td>
</tr>
<tr>
<td>(d)-ary heap</td>
<td>(O(\log n))</td>
<td>(O(\log n))</td>
<td>(O((nd + m) \frac{\log n}{\log d}))</td>
</tr>
<tr>
<td>Fibonacci heap</td>
<td>(O(\log n))</td>
<td>(O(1)) amortized</td>
<td>(O(n \log n + m))</td>
</tr>
</tbody>
</table>

- Optimal choice is \(d \approx m/n\) (the *average* degree of the graph)
- \(d\)-ary heap works well for both sparse and dense graphs
 - If \(m = n^{1+x}\), what is the running time of Dijkstra’s algorithm using a \(d\)-ary heap?