Strongly connected components, single-origin shortest paths in weighted graphs
1. Applications of DFS
 - Strongly connected components

2. Shortest paths in graphs with non-negative edge weights (Dijkstra’s algorithm)
 - Correctness
 - Implementations
Depth-first search (DFS): starting from a vertex s, explore the graph as deeply as possible, then backtrack

1. Try the first edge out of s, towards some node v.
2. Continue from v until you reach a **dead end**, that is a node whose neighbors have all been explored.
3. **Backtrack** to the first node with an unexplored neighbor and repeat 2.

Remark: DFS answers s-t connectivity
Directed graphs: classification of edges

DFS constructs a forest of trees.

Graph edges that do not belong to the DFS tree(s) may be

1. forward: from a vertex to a descendant (other than a child)
2. back: from a vertex to an ancestor
3. cross: from right to left (no ancestral relation), that is
 - from tree to tree
 - between nodes in the same tree but on different branches
If we use an explicit stack, then

- \(\text{start}(u) \) is the time when \(u \) is pushed in the stack
- \(\text{finish}(u) \) is the time when \(u \) is popped from the stack (that is, all of its neighbors have been explored).

Intervals \([\text{start}(u), \text{finish}(u)]\) and \([\text{start}(v), \text{finish}(v)]\) either

- contain each other (\(u \) is an ancestor of \(v \) or vice versa); or
- they are disjoint.
Classifying edges using time

1. Edge \((u, v) \in E\) is a back edge in a DFS tree if and only if
 \[
 \text{start}(v) < \text{start}(u) < \text{finish}(u) < \text{finish}(v).
 \]

2. Edge \((u, v) \in E\) is a forward edge if
 \[
 \text{start}(u) < \text{start}(v) < \text{finish}(v) < \text{finish}(u).
 \]

3. Edge \((u, v) \in E\) is a cross edge if
 \[
 \text{start}(v) < \text{finish}(v) < \text{start}(u) < \text{finish}(u).
 \]
1. Applications of DFS
 - Strongly connected components

2. Shortest paths in graphs with non-negative edge weights (Dijkstra’s algorithm)
 - Correctness
 - Implementations
Exploring the connectivity of a graph

- **Undirected** graphs: find all connected components

- **Directed** graphs: find all *strongly connected components* (SCCs)

 - \(\text{SCC}(u) = \text{set of nodes that are reachable from } u \text{ and have a path back to } u \)

 - SCCs provide a **hierarchical** view of the connectivity of the graph:

 - on a top level, the meta-graph of SCCs has a useful and simple structure (*coming up*);
 - each meta-vertex of this graph is a fully connected subgraph that we can further explore.
How can we find $SCC(u)$ using BFS?

1. Run $BFS(u)$; the resulting tree T consists of the set of nodes to which there is a path from u.
2. Define G^r as the reverse graph, where edge (i, j) becomes edge (j, i).
3. Run $BFS(u)$ in G^r; the resulting BFS tree T' consists of the set of nodes that have a path to u.
4. The common vertices in T, T' compose the strongly connected component of u.

What if we want all the SCCs of the graph?
Consider the meta-graph of all SCCs of G.

- Make a (super)vertex for every SCC.
- Add a (super)edge from SCC C_i to SCC C_j if there is an edge from some vertex u of C_i to some vertex v of C_j.

What kind of graph is the meta-graph of SCC’s?
Consider the meta-graph of all SCCs of G.

- Make a (super)vertex for every SCC.
- Add a (super)edge from SCC C_i to SCC C_j if there is an edge from some vertex u of C_i to some vertex v of C_j.

This graph is a DAG.
Is there an SCC we could process first?

Suppose we had a sink SCC of G, that is, an SCC with no outgoing edges.

1. What will DFS discover starting at a node of a sink SCC?
2. How do we find a node that for sure lies in a sink SCC?
3. How do we continue to find all other SCCs?
Easier to find a node in a *source* SCC!

Fact 1.

*The node assigned the largest finish time when we run DFS(G) belongs to a *source* SCC in G.*

Example: v_5 belongs to source SCC C_2.

Proof.

We will use Lemma 2 below. Let G be a directed graph. The meta-graph of its SCCs is a DAG. For an SCC C, let

$$ finish(C) = \max_{v \in C} finish(v) $$

Example: $finish(C_1) = finish(v_1) = 8$.

Lemma 2.

*Let C_i, C_j be SCCs in G. Suppose there is an edge $(u, v) \in E$ such that $u \in C_i$ and $v \in C_j$. Then $finish(C_i) > finish(C_j)$.***
Fact 1 provides a direct way to find a node in a source SCC of G: pick the node with largest $finish$.

But we want a node in a sink SCC of G!

Consider G^r, the graph where the edges of G are reversed. How do the SCCs of G and G^r compare?

Run DFS on G^r: the node with the largest $finish$ comes from a source SCC of G^r (Fact 1). This is a sink SCC of G!
We now know how to find a sink SCC in G.

1. Run $\text{DFS}(G^r)$; compute $finish$ times.
2. Run $\text{DFS}(G)$ starting from the node with the largest $finish$: the nodes in the resulting tree T form a sink SCC in G.

How do we find all remaining SCCs?

- Remove T from G; let G' be the resulting graph.
- The meta-graph of SCCs of G' is a DAG, hence it has at least one sink SCC.
- Apply the procedure above recursively on G'.
Algorithm for finding SCCs in directed graphs

\textbf{SCC}(G = (V, E))

1. Compute G^r.
2. Run DFS(G^r); compute \textit{finish}(u) for all u.
3. Run DFS(G) in decreasing order of \textit{finish}(u).
4. Output the vertices of each tree in the DFS forest of line 3 as an SCC.

\textbf{Remark 1.}

1. Running time: $O(n + m)$ — why?
2. Equivalently, we can (i) run DFS(G), compute \textit{finish} times; (ii) run DFS(G^r) by decreasing order of \textit{finish}. Why?
A directed graph and its DFS forest with time intervals
DFS forest of G'; nodes are considered by decreasing finish times
Let G be a directed graph. The meta-graph of its SCCs is a DAG.

For an SCC C, let

\[
\text{finish}(C) = \max_{v \in C} \text{finish}(v)
\]

Lemma 3.

Let C_i, C_j be SCCs in G. Suppose there is an edge $(u, v) \in E$ such that $u \in C_i$ and $v \in C_j$. Then $\text{finish}(C_i) > \text{finish}(C_j)$.
Proof of Lemma 2

There are two cases to consider:

1. $\text{start}(u) < \text{start}(v)$ (DFS starts at C_i)

 - Before leaving u, DFS will explore edge (u, v).
 - Since $v \in C_j$, all of C_j will now be explored.
 - All vertices in C_j will be assigned finish times before DFS backtracks to u and assigns a finish time to u. Thus

 $$\text{finish}(C_j) < \text{finish}(u) \leq \text{finish}(C_i)$$

2. $\text{start}(u) > \text{start}(v)$

Since there is no edge from C_j to C_i (DAG!), DFS will finish exploring C_j before it discovers u. Thus

$$\text{finish}(C_j) < \text{start}(u) < \text{finish}(u)$$

$$\Rightarrow \text{finish}(C_j) < \text{finish}(C_i)$$
Today

1. Applications of DFS
 - Strongly connected components

2. Shortest paths in graphs with non-negative edge weights (Dijkstra’s algorithm)
 - Correctness
 - Implementations
Edge weights represent *distances* (or time, cost, etc.)

Consider a path $P = (v_0, \ldots, v_k)$. The **length** of P is the sum of the weights of its edges:

$$w(P) = \sum_{i=0}^{k-1} w(v_i, v_{i+1}).$$

In weighted graphs, a **shortest path** from u to v is a path of **minimum** length among all paths from u to v.
Notation

- **s-t path**: a path from s to t.
- **$dist(s, t)$**: the length of the shortest s-t path;

\[
dist(s, t) = \begin{cases}
\min_P w(P), & \text{if exists } s-t \text{ path} \\
\infty, & \text{otherwise}
\end{cases}
\]

- **$dist(t)$**: the length of the shortest s-t path, when s is fixed.
- **We will refer to** $w(P)$ as the **weight** or **cost** or **length** of P.
Single-origin (source) shortest-paths problem

Input:
- a weighted, directed graph \(G = (V, E, w) \), where function \(w : E \rightarrow R \) maps edges to real-valued weights;
- an origin vertex \(s \in V \).

Output: for every vertex \(v \in V \)
1. the length of a shortest \(s-v \) path;
2. a shortest \(s-v \) path.
Given an algorithm A for single-origin shortest-paths

We can also solve

- **single-pair** shortest-path problem
- **single-destination** shortest-paths problem: find a shortest path from every vertex to a destination t
- **all-pairs** shortest-paths: find a shortest path between every pair of vertices
Input

- a weighted, directed graph $G = (V, E, w)$; function $w : E \rightarrow R_+$ assigns non-negative real-valued weights to edges;
- an origin vertex $s \in V$.

Output: for every vertex $v \in V$

1. the length of a shortest s-v path;
2. a shortest s-v path.
Dijkstra’s algorithm (Input: $G = (V, E, w)$, $s \in V$)

Output: arrays $dist$, $prev$ with n entries such that

1. $dist[v] =$ length of the shortest s-v path
2. $prev[v] =$ node before v on the shortest s-v path

At all times, maintain a set S of nodes for which the distance from s has been determined.

- Initially, $dist[s] = 0$, $S = \{s\}$.
- Each time, add to S the node $v \in V - S$ that
 1. has an edge from some node in S;
 2. minimizes the following quantity among all nodes $v \in V - S$

$$
 d(v) = \min_{u \in S: (u, v) \in E} \{dist[u] + w_{uv}\}
$$

- Set $prev[v] = u$.

An example weighted directed graph
Dijkstra’s output for example graph

The distances (in parentheses) and reverse shortest paths.
Greedy principle: a local decision rule is applied at every step.

- Dijkstra’s algorithm is greedy: always form the shortest new $s-v$ path by first following a path to some node u in S, and then a single edge (u, v).

- Proof of optimality: it always stays ahead of any other solution; when a path to a node v is selected, that path is shorter than every other possible $s-v$ path.
Correctness of Dijkstra’s algorithm

At all times, the algorithm maintains a set S of nodes for which it has determined a shortest-path distance from s.

Claim 1.

Consider the set S at any point in the algorithm’s execution. For each u in S, the path P_u is a shortest s-u path.

Optimality of the algorithm follows from the claim (*why?*).
Proof of Claim 1

By induction on the size of S.

- **Base case:** $|S| = 1$, $\text{dist}(s) = 0$.

- **Hypothesis:** suppose the claim is true for $|S| = k$, that is, for every $u \in S$, P_u is a shortest s-u path.

- **Step:** let v be the $k + 1$-st node added to S. We want to show that P_v, which is P_u for some $u \in S$, followed by the edge (u, v), is a shortest s-v path.

 Consider any other s-v path, call it P. P must leave S somewhere since $v \notin S$: let $y \neq v$ be the first node of P in $V - S$ and $x \in S$ the node before y in P. Since the algorithm added v in this iteration and not y, it must be that $d(v) \leq d(y)$. So just the subpath $s \rightarrow x \rightarrow y$ in P is at least as long as P_v! Hence so is P (**why?**).
Dijkstra-v1($G = (V, E, w), s \in V$)

Initialize(G, s)
$S = \{s\}$
while $S \neq V$ do

For every $x \in V - S$ with at least one edge from S compute
\[d(x) = \min_{u \in S, (u, x) \in E} \{dist[u] + w_{ux}\} \]

Select v such that $d(v) = \min_{x \in V - S} d(x)$

$S = S \cup \{v\}$
$dist[v] = d(v)$
$prev[v] = u$
end while

Initialize(G, s)

for $v \in V$ do
$dist[v] = \infty$
$prev[v] = NIL$
end for
$dist[s] = 0$
Improved implementation (I)

Idea: Keep a conservative overestimate of the true length of the shortest s-v path in $\text{dist}[v]$ as follows: when u is added to S, update $\text{dist}[v]$ for all v with $(u, v) \in E$.

Dijkstra-v2($G = (V, E, w), s \in V$)

Initialize(G, s)

$S = \emptyset$

while $S \neq V$ do

Pick u so that $\text{dist}[u]$ is minimum among all nodes in $V - S$

$S = S \cup \{u\}$

for $(u, v) \in E$ do

Update(u, v)

end for

end while

Update(u, v)

if $\text{dist}[v] > \text{dist}[u] + w_{uv}$ then

$\text{dist}[v] = \text{dist}[u] + w_{uv}$

$\text{prev}[v] = u$

end if
Priority queues and binary heaps

- **Priority queue**: a priority queue is a data structure for maintaining a set S of n elements, each with an associated value called a *key*.

- **Operations supported by a min-priority queue Q**:
 1. $\text{BuildQueue}(\{S; keys\})$: builds a min-priority queue
 2. $\text{Insert}(Q, x)$: insert element x into Q
 3. $\text{Extract-min}(Q)$: extract the minimum element from Q
 4. $\text{Decrease-key}(Q, x, k)$: decrease the *key* for x to a new (smaller) value k

- We can implement a min-priority queue as a **binary min-heap**. Then each of the four operations above requires time $O(n)$, $O(\log n)$, $O(\log n)$, $O(\log n)$ respectively.

See Chapter 6 in your textbook for more details on binary heaps.
Improved implementation (II): binary min-heap

Idea: Use a priority queue implemented as a binary min-heap: store vertex u with key $\text{dist}[u]$. Required operations: Insert, ExtractMin; DecreaseKey for Update; each takes $O(\log n)$ time.

Dijkstra-v3($G = (V, E, w), s \in V$)

Initialize(G, s)
$Q = \text{BuildQueue}(|V; \text{dist}|)$
$S = \emptyset$

while $Q \neq \emptyset$ do
 $u = \text{ExtractMin}(Q)$
 $S = S \cup \{u\}$
 for $(u, v) \in E$ do
 Update(u, v)
 end for
end while

Running time: $O(n \log n + m \log n) = O(m \log n)$

When is Dijkstra-v3() better than Dijkstra-v2()?
Further implementations of Dijkstra’s algorithm

Notation: \(|V| = n, |E| = m\)

<table>
<thead>
<tr>
<th>Implementation</th>
<th>ExtractMin</th>
<th>Insert/DecreaseKey</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Array</td>
<td>(O(n))</td>
<td>(O(1))</td>
<td>(O(n^2))</td>
</tr>
<tr>
<td>Binary heap</td>
<td>(O(\log n))</td>
<td>(O(\log n))</td>
<td>(O((n + m) \log n))</td>
</tr>
<tr>
<td>(d)-ary heap</td>
<td>(O(\log n))</td>
<td>(O(\log n))</td>
<td>(O((nd + m) \frac{\log n}{\log d}))</td>
</tr>
<tr>
<td>Fibonacci heap</td>
<td>(O(\log n))</td>
<td>(O(1)) \text{ amortized}</td>
<td>(O(n \log n + m))</td>
</tr>
</tbody>
</table>

- Optimal choice is \(d \approx m/n\) (the average degree of the graph)
- \(d\)-ary heap works well for both sparse and dense graphs
 - If \(m = n^{1+x}\), what is the running time of Dijkstra’s algorithm using a \(d\)-ary heap?