
Analysis of Algorithms, I
CSOR W4231

Eleni Drinea
Computer Science Department

Columbia University

The dynamic programming principle; segmented least squares



Outline

1 Segmented least squares
An exponential recursive algorithm

2 A Dynamic Programming (DP) solution
A quadratic iterative algorithm
Applying the DP principle



Today

1 Segmented least squares
An exponential recursive algorithm

2 A Dynamic Programming (DP) solution
A quadratic iterative algorithm
Applying the DP principle



Linear least squares fitting

A foundational problem in statistics: find a line of best fit
through some data points.



Linear least squares fitting

Input: a set P of n data points (x1, y1), (x2, y2), . . ., (xn, yn);
we assume x1 < x2 < . . . < xn.

Output: the line L defined as y = ax + b that minimizes the
error

err(L,P ) =

n∑
i=1

(yi − axi − b)2 (1)



Linear least squares fitting: solution

Given a set P of data points, we can use calculus to show that
the line L given by y = ax + b that minimizes

err(L,P ) =

n∑
i=1

(yi − axi − b)2 (2)

satisfies

a =
n
∑

i xiyi − (
∑

i xi)(
∑

i yi)

n
∑

i x
2
i − (

∑
i xi)2

(3)

b =

∑
i yi − a

∑
i xi

n
(4)

How fast can we compute a, b?



What if the data changes direction?



What if the data changes direction more than once?



How to detect change in the data

I Any single line would have large error.

I Idea 1: hardcode number of lines to 2 (or some fixed m).
I Fails for the dataset on the last slide.

I Idea 2: pass an arbitrary set of lines through the points
and seek the set of lines that minimizes the error.

I Trivial solution: have a different line pass through each pair
of consecutive points in P .

I Idea 3: fit the points well, using as few lines as possible.
I Trade-off between complexity and error of the model



Formalizing the problem

Input: data set P = {p1, . . . , pn} of points on the plane.

I A segment S = {pi, pi+1, . . . , pj} is a contiguous subset of the
input.

I Let A be a partition of P into mA segments S1, S2, . . . , SmA .

For every segment Sk, use (2), (3), (4) to compute a line Lk that
minimizes err(Lk, Sk).

I Let C > 0 be a fixed multiplier. The cost of partition A is∑
Sk∈A

err(Lk, Sk) + mA · C



Segmented least squares

This problem is an instance of change detection in data mining
and statistics.

Input: A set P of n data points pi = (xi, yi) as before.

Output: A segmentation A∗ = {S1, S2, . . . , SmA∗} of P whose
cost ∑

Sk∈A∗
err(Lk, Sk) + mA∗C

is minimum.



A brute force approach

We can find the optimal partition (that is, the one incurring the
minimum cost) by exhaustive search.

I Enumerate every possible partition (segmentation) and
compute its cost.

I Output the one that incurs the minimum cost.

4 Ω(2n) partitions



A crucial observation regarding the last data point

Consider the last point pn in the data set.

I pn belongs to a single segment in the optimal partition.

I That segment starts at an earlier point pi, for some
1 ≤ i ≤ n.

This suggests a recursive solution: if we knew where the last
segment starts, then we could remove it and recursively solve
the problem on the remaining points {p1, . . . , pi−1}.



A recursive approach

I Let OPT (j) = minimum cost of a partition of the points
p1, . . . , pj .

I Then, if the last segment of the optimal partition is
{pi, . . . , pn}, the cost of the optimal solution is

OPT (n) = err(L, {pi, . . . , pn}) + C + OPT (i− 1).

I But we don’t know where the last segment starts! How do
we find the point pi?

I Set

OPT (n) = min
1≤i≤n

{
err(L, {pi, . . . , pn}) + C + OPT (i− 1)

}
.



A recurrence for the optimal solution

Notation: let ei,j = err(L, {pi, . . . , pj}), for 1 ≤ i ≤ j ≤ n.
Then

OPT (n) = min
1≤i≤n

{
ei,n + C + OPT (i− 1)

}
.

If we apply the above expression recursively to remove the last
segment, we obtain the recurrence

OPT (j) = min
1≤i≤j

{
ei,j + C + OPT (i− 1)

}
(5)

Remark 1.

1. We can precompute and store all ei,j using equations (2),
(3), (4) in O(n3) time. Can be improved to O(n2).

2. The natural recursive algorithm arising from recurrence (5)
is not efficient (think about its recursion tree!).



Exponential-time recursion

Notation: T (n) = time to compute OPT (n), that is, the cost
of the optimal partition for n points.

Then
T (n) ≥ T (n− 1) + T (n− 2).

I Can show that T (n) ≥ Fn, the n-th Fibonacci number
(by strong induction on n).

I From optional problem 6a in Homework 1, Fn = Ω(2n/2).

I Hence T (n) = Ω(2n/2).

⇒ The recursive algorithm requires Ω(2n/2) time.



Today

1 Segmented least squares
An exponential recursive algorithm

2 A Dynamic Programming (DP) solution
A quadratic iterative algorithm
Applying the DP principle



Are we really that far from an efficient solution?

Recall Fibonacci problem from HW1: exponential recursive
algorithm, polynomial iterative solution

How?

1. Overlapping subproblems: spectacular redundancy in
computations of recursion tree

2. Easy-to-compute recurrence for combining the smaller
subproblems: Fn = Fn−1 + Fn−2

3. Iterative, bottom-up computations: we computed and
stored the subproblems from smallest (F0, F1) to largest
(Fn), iteratively.

4. Small number of subproblems: only solved n− 1
subproblems.



Elements of DP in segmented least squares

Our problem exhibits similar properties.

1. Overlapping subproblems

2. Easy-to-compute recurrence for combining optimal
solutions to smaller subproblems into the optimal solution
of a larger subproblem (once smaller subproblems have
been solved)

3. Iterative, bottom-up computations: compute the
subproblems from smallest (0 points) to largest (n points),
iteratively.

4. Small number of subproblems: we only need to solve n
subproblems.



A dynamic programming approach

OPT (j) = min
1≤i≤j

{
ei,j + C + OPT (i− 1)

}
I The optimal solution to the subproblem on p1, . . . , pj

contains optimal solutions to smaller subproblems.

I Recurrence 5 provides an ordering of the subproblems
from smaller to larger, with the subproblem of size 0 being
the smallest and the subproblem of size n the largest.

⇒ There are n + 1 subproblems in total. Solving the j-th
subproblem requires Θ(j) = O(n) time.

⇒ The overall running time is O(n2).

I Boundary conditions: OPT (0) = 0.

I Segment pk, . . . , pj appears in the optimal solution only if
the minimum in the expression above is achieved for i = k.



An iterative algorithm for segmented least squares

Let M be an array of n entries such that

M [i] = cost of optimal partition of the first i data points

SegmentedLS(n, P )

M [0] = 0
for all pairs i ≤ j do

Compute ei,j for segment pi, . . . , pj using (2), (3), (4)
end for
for j = 1 to n do

M [j] = min
1≤i≤j

{ei,j + C + M [i− 1]}
end for
Return M [n]

Running time: time required to fill in dynamic programming
array M is O(n3) + O(n2). Can be brought down to O(n2).



Reconstructing an optimal segmentation

We can reconstruct the optimal partition recursively, using
array M and error matrix e.

OPTSegmentation(j)

if (j == 0) then return
else

Find 1 ≤ i ≤ j such that M [j] = ei,j + C + M [i− 1]
OPTSegmentation(i− 1)
Output segment {pi, . . . , pj}

end if

I Initial call: OPTSegmentation(n)

I Running time?



Obtaining efficient algorithms using DP

1. Optimal substructure: the optimal solution to the problem
contains optimal solutions to the subproblems.

2. A recurrence for the overall optimal solution in terms of
optimal solutions to appropriate subproblems. The
recurrence should provide a natural ordering of the
subproblems from smaller to larger and require polynomial
work for combining solutions to the subproblems.

3. Iterative, bottom-up computation of subproblems, from
smaller to larger.

4. Small number of subproblems (polynomial in n).



Dynamic programming vs Divide & Conquer

I They both combine solutions to subproblems to generate
the overall solution.

I However, divide and conquer starts with a large problem
and divides it into small pieces.

I While dynamic programming works from the bottom up,
solving the smallest subproblems first and building optimal
solutions to steadily larger problems.


	Segmented least squares
	An exponential recursive algorithm

	A Dynamic Programming (DP) solution
	A quadratic iterative algorithm
	Applying the DP principle


