1. Hashing
2. Analyzing hash tables using balls and bins
3. Saving space: hashing-based fingerprints
4. Bloom filters
Today

1. Hashing

2. Analyzing hash tables using balls and bins

3. Saving space: hashing-based fingerprints

4. Bloom filters
The problem

A data structure maintaining a dynamic subset S of a huge universe U.

- Typically, $|S| \ll |U|$

The data structure should support

- efficient **insertion**
- efficient **deletion**
- efficient **search**

We will call such a data structure a **dictionary**.
A dictionary maintains a subset S of a universe U so that inserting, deleting and searching is efficient.

Operations supported by a dictionary

1. **Create()**: initialize a dictionary with $S = \emptyset$
2. **Insert(x)**: add x to S, if $x \notin S$
 - additional information about x might be stored in the dictionary as part of a record for x
3. **Delete(x)**: delete x from S, if $x \in S$
4. **Lookup(x)**: determine if $x \in S$
We want to maintain a dynamic list of 250 IP addresses

- e.g., these correspond to addresses of currently active customers of a Web service
- each IP address consists of 32 bits, e.g. 128.32.168.80
The challenge: U is enormous, that is, $|U| \gg |S|$

1. Maintain array S of size $|U|$ such that $S[i] = 1$ if and only if $i \in S$
 - Insert, Delete, Lookup require $O(1)$ time

 Can’t store an array of size anywhere close to $|U|$!
 - S should have $|U| = 2^{32} \approx 4$ billion entries
 - S would be mostly empty (huge waste of space)

2. Store S in a linked list
 - Space: proportional to $|S| = 250$
 - Time for Lookup: proportional to $|S|$; too slow

Can we support fast Insert, Delete, Lookup (as in array implementation) but only use space proportional to $|S|$ (linked list implementation)?
Idea: assign a short *nickname* to each element in \(U \)

- Each of the \(2^{32} \) IP addresses is assigned a number between 1 and \(|S| = 250 \)
 - range will be slightly adjusted

- Total amount of storage: approximately \(|S| \), independent of \(|U| \)

- If not too many IP addresses per nickname, then Lookup is efficient (*details coming up*)
How can we assign a short name?

By hashing: use a hash function \(h : U \rightarrow \{0, \ldots, n - 1\} \)

- Typically, \(n \ll |U| \) and is close to \(|S|\)

For example,

- \(h : \{0, \ldots, 2^{32} - 1\} \rightarrow \{0, \ldots, 2^{49}\} \)
- IP address \(x \) gets name \(h(x) \)
- Hash table \(H \) of size 250: store address \(x \) at entry \(h(x) \)

So \textbf{Insert}(x) takes constant time. \textbf{What if we try to insert} \(y \neq x \), with \(h(x) = h(y) \)?
Collision: elements $x \neq y$ such that $h(x) = h(y)$

Easiest way to deal with collisions: chain hashing

- Entry i in the hash table is a linked list of elements x such that $h(x) = i$
- Alternatively, can think of every entry in the hash table as a bin containing the elements that hash to the same location
Chain hashing

Maintain a linked list at $H[i]$ for all x such that $h(x) = i$.

![Diagram showing a linked list at $H[i]$ with IP addresses 128.20.110.80, 128.5.110.60, 194.66.82.1, 168.212.26.204, and 192.168.1.2. The list is structured by the hash function $h(x)$, with null nodes indicating the end of each list.]
Time for \textbf{Lookup}(x):

1. time to compute \(h(x) \); \textit{typically, constant}

2. time to scan the linked list at position \(h(x) \) in hash table
 - proportional to the \textit{length} of the linked list at \(h(x) \), which is proportional to the \# elements that collide with \(x \)

\textbf{Goal}: find a hash function that “spreads out” the elements well
Consider the following two simple hash functions that hash an IP address x from $\{0, \ldots, 2^{32} - 1\}$ to $\{0, \ldots, 255\}$:

- assign the last 8 bits of x as its name
- assign the first 8 bits of x as its name

Remark 1. Nothing is inherently wrong with these hash functions: the problem is that our 250 IP addresses might not be drawn uniformly at random from among all 2^{32} possibilities.
No single hash function can work well on all data sets

- **Fix** the hash function h.
- h distributes $|U|$ elements into n names.
 ⇒ exists data set of at least $\frac{|U|}{n}$ elements that all map to the same name
 ⇒ if our customers come from this data set, lots of collisions

Fact: for any fixed (deterministic) $h : U \rightarrow \{0, 1, \ldots, n - 1\}$ where $|U| \geq n^2$, there exists some set S of n elements that all map to the same position.
Randomization can help

- **Extreme example:** for every $0 \leq j \leq n - 1$, assign name j to element x with probability $\frac{1}{n}$.
 - Fix $x, y \in U$. Then $\Pr[h(x) = h(y)] = \frac{1}{n}$.
 - This doesn’t quite work. (Think $\text{Lookup}(x): where \ is \ x$?)

- However, intuitively, hash functions that spread things around in a *random* way can effectively reduce collisions.

 ⇒ Trade-off in hash function design: h must be “random” to scatter things around for all inputs but still be a function

Goal: design h that allows for efficient dictionary operations with high probability
A careful use of randomization

- Randomize over the **choice** of the hash function from a suitable class of functions into \([0, n - 1]\) (*details coming up*)

- \(h\) must have a **compact** representation
Universal hash function

Idea: choose h at random from a carefully selected class of functions H with the following properties:

1. h behaves almost like a completely random hash function.
 - For $x, y \in U$. The probability that a randomly chosen $h \in H$ satisfies $h(x) = h(y)$ is at most $1/n$.
2. Can select a random h efficiently.
3. Given h, can compute $h(x)$ efficiently.

Such hash functions are called **universal**; their design relies on number theoretic facts.
Example of universal hash function

- Pick a prime p close to $|S| = 250$; set $n = p$
 - E.g., pick $p = 257$; set the size n of the hash table to 257

- Look at IP address x as (x_1, x_2, x_3, x_4), where x_1, x_2, x_3, x_4 are integers $\mod n$.

- Define $h : U \rightarrow \{0, 1, \ldots, n - 1\}$ as follows:
 - Choose a_1, a_2, a_3, a_4 randomly from $\{0, 1, \ldots, n - 1\}$
 - E.g., $a_1 = 80, a_2 = 35, a_3 = 168, a_4 = 220$
 - Map IP address x to $h(x) = \left(\sum_{i=1}^{4} a_i x_i\right) \mod n$
 - E.g., $x = 128.32.168.80$, $h(x) = (80 \cdot 128 + 35 \cdot 32 + 168 \cdot 168 + 220 \cdot 80) \mod 257$
Claim 1.

Consider any pair \(x = (x_1, x_2, x_3, x_4), y = (y_1, y_2, y_3, y_4) \). If \(a_1, \ldots, a_4 \) are chosen uniformly at random from \(\{0, \ldots, n - 1\} \), then

\[
\Pr[h_a(x_1, \ldots, x_4) = h_a(y_1, \ldots, y_4)] = \frac{1}{n}
\]

The proof relies on elementary number theory.

Corollary 1.

Fix \(x \in U \). The expected number of elements colliding with \(x \) is less than 1. Hence the expected lookup time is constant.
From now on, assume a *completely random hash function* exists.

\[\square \text{Does not exist! But can provide a good rough idea of how hashing schemes perform in practice.} \]

- Let \(h : U \to \{0, 1, \ldots, n - 1\} \) be a completely random (ideal) hash function. For all \(x \in U, 0 \leq j \leq n - 1 \)

\[
Pr[h(x) = j] = \frac{1}{n}
\]

Remark 2.

\(h(x) \) is **fixed** for every \(x \): it just takes **one** of the \(n \) possible values with equal probability.
Today

1. Hashing

2. Analyzing hash tables using balls and bins

3. Saving space: hashing-based fingerprints

4. Bloom filters
Q1: How many elements can we insert in the hash table before it is more likely than not that there is a collision?
Q1: How many elements can we insert in the hash table before it is more likely than not that there is a collision?

This is just an occupancy problem!
Q1: How many elements can we insert in the hash table before it is more likely than not that there is a collision?

Occupancy problems, revisited: find the distribution of balls into bins when \(m \) balls are thrown independently and uniformly at random into \(n \) bins.
Q1: How many elements can we insert in the hash table before it is more likely than not that there is a collision?

Occupancy problems, revisited: find the distribution of balls into bins when m balls are thrown independently and uniformly at random into n bins.

Hashing as an occupancy problem:
- balls correspond to elements from U
- bins are slots in the hash table
- each ball falls into one of the n bins independently and with probability $1/n$
Hashing modeled as a balls and bins problem

Q1: How many elements can we insert in the hash table before it is more likely than not that there is a collision?

Hashing as an occupancy problem:
- balls correspond to elements from U
- bins are slots in the hash table
- each ball falls into one of the n bins independently and with probability $1/n$

Q1 (rephrased): How many balls can we throw before it is more likely than not that some bin contains at least two balls?

Answer: $\Omega(\sqrt{n})$ (see the birthday paradox)
Towards analyzing time/space efficiency of hash table

- What is the expected time for \text{Lookup}(x)\? \\
- What is the expected wasted space in the hash table\? \\
- What is the worst-case time for \text{Lookup}(x)\?
What is the expected time for $\text{Lookup}(x)$? Correlates to expected load of a bin.

What is the expected wasted space in the hash table? Correlates to expected number of empty bins.

What is the worst-case time for $\text{Lookup}(x)$? Correlates to load of the fullest bin.
For $n = m$

- **What is the expected time for Lookup(x)?**
 $O(1)$.

- **What is the expected wasted space in the hash table?**
 At least a third of the slots are empty.

- **What is the worst-case time for Lookup(x), with high probability?**
 $\Theta(\ln n / \ln \ln n)$, with high probability.
Proposition 1.

When throwing \(n \) balls into \(n \) bins uniformly and independently at random, the maximum load in any bin is \(\Theta(\ln n / \ln \ln n) \) with probability close to 1 as \(n \) grows large.

Two-sentence sketch of the proof.

1. Upper bound the probability that any bin contains more than \(k \) balls by a union bound:
 \[
 \sum_{j=1}^{n} \sum_{\ell=k}^{n} \binom{n}{\ell} \left(\frac{1}{n} \right)^\ell \left(1 - \frac{1}{n} \right)^{n-\ell}.
 \]

2. Compute the smallest possible \(k^* \) such that the probability above is less than \(1/n \) (which becomes negligible as \(n \) grows large).
1. Hashing
2. Analyzing hash tables using balls and bins
3. Saving space: hashing-based fingerprints
4. Bloom filters
We want to maintain a dictionary for a set S of 2^{16} bad passwords so that, when a user tries to set up a password, we can check as quickly as possible if it belongs to S and reject it.

We assume that each password consists of 8 ASCII characters

- hence each password requires 8 bytes (64 bits) to represent
Let S be the set of bad passwords.

Input: a 64-bit password x, and a query of the form “Is x a bad password?”

Output: a dictionary data structure for S that answers queries as above and

- is **small**: uses less space than explicitly storing all bad passwords
- allows for erroneous **yes** answers occasionally
 - that is, we occasionally answer “$x \in S$” even though $x \notin S$
Approximate set membership

The password checker belongs to a broad class of problems, called *approximate set membership* problems.

Input: a large set $S = \{s_1, \ldots, s_m\}$, and queries of the form “Is $x \in S$?”

We want a dictionary for S that is **small** (smaller than the explicit representation provided by a hash table).

To achieve this, we allow for some probability of error

- **False positives:** answer *yes* when $x \not\in S$
- **False negatives:** answer *no* when $x \in S$

Output: small probability of false positives, no false negatives
Use a hash function $h : \{0, \ldots, 2^{64} - 1\} \rightarrow \{0, \ldots, 2^{32} - 1\}$ to map each password into a 32 bit string.

This string will serve as a short *fingerprint* of the password.

Keep the *fingerprints* in a sorted list.

To check if a proposed password is **bad:**

1. calculate its *fingerprint*
2. binary search for the *fingerprint* in the list of fingerprints; if found, declare the password **bad** and ask the user to enter a new one.
Why did we map passwords to 32-bit fingerprints?

Motivation: make fingerprints long enough so that the false positive probability is acceptable.

Let \(b \) be the number of bits used by our hash function to map the \(m \) bad passwords into fingerprints, thus

\[
 h : \{0, 1, \ldots, 2^{64} - 1\} \rightarrow \{0, \ldots, 2^b - 1\}
\]

We will choose \(b \) so that the probability of a false positive is acceptable, e.g., at most \(1/m \).
There are 2^b possible strings of length b.
Let x be a **good** password.
Fix a $y \in S$ (recall that all m passwords in S are **bad**).

- $\Pr[x \text{ has the same fingerprint as } y] = 1/2^b$
- $\Pr[x \text{ does not have the same fingerprint as } y] = 1 - 1/2^b$
- let $p = 1 - 1/2^b$
- $\Pr[x \text{ does not have the same fingerprint as } \text{any } w \in S] = p^m$
- $\Pr[x \text{ has the same fingerprint as some } w \in S] = 1 - p^m$

Hence the false positive probability is

$$1 - p^m = 1 - (1 - 1/2^b)^m \approx 1 - e^{-m/2^b}$$
To make the probability of a false positive less than, say, a constant c, we require

$$1 - e^{-m/2^b} \leq c \Rightarrow b \geq \log_2 \frac{m}{\ln \left(1/(1 - c)\right)}.$$

So $b = \Omega(\log_2 \frac{m}{\ln \left(1/(1 - c)\right)})$ bits.
Now suppose we use $b = 2 \log_2 m$.

Plugging back into the original formula for the probability of false positive, which is $1 - (1 - 1/2^b)^m$, we get

$$1 - \left(1 - \frac{1}{m^2}\right)^m \leq 1 - \left(1 - \frac{1}{m}\right) = \frac{1}{m}$$

Thus if our dictionary has $|S| = m = 2^{16}$ bad passwords, using a hash function that maps each of the m passwords to 32 bits yields a false positive probability of about $1/2^{16}$.
Today

1. Hashing
2. Analyzing hash tables using balls and bins
3. Saving space: hashing-based fingerprints
4. Bloom filters
Input: a large set S, and queries of the form “Is $x \in S$?”
Fast approximate set membership

Input: a large set S, and queries of the form “Is $x \in S$?”

We want a data structure that answers the queries

- **fast** (faster than searching in S)
- is **small** (smaller than the explicit representation provided by hash table)
Fast approximate set membership

Input: a *large* set S, and queries of the form “Is $x \in S$?”

We want a **data structure** that answers the queries

- **fast** (faster than searching in S)
- is **small** (smaller than the explicit representation provided by hash table)

To achieve the above, allow for some probability of error

- **False positives:** answer **yes** when $x \not\in S$
- **False negatives:** answer **no** when $x \in S$
Input: a *large* set S, and queries of the form “Is $x \in S$?”

We want a **data structure** that answers the queries

- **fast** (faster than searching in S)
- **small** (smaller than the explicit representation provided by hash table)

To achieve the above, allow for some probability of error

- **False positives:** answer *yes* when $x \notin S$
- **False negatives:** answer *no* when $x \in S$

Output: small probability of false positives, no false negatives
A Bloom filter consists of:

1. an array B of n bits, initially all set to 0.

$$B = \begin{array}{cccccccccccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}$$

2. k independent random hash functions h_1, \ldots, h_k with range \{0, 1, \ldots, n - 1\}.

A basic Bloom filter supports

- **Insert**(x)
- **Lookup**(x)
Representing a set $S = \{x_1, \ldots, x_m\}$ using a Bloom filter

SetupBloomFilter(S, h_1, \ldots, h_k)

1. Initialize array B of size n to all zeros
2. for $i = 1$ to m do
 1. Insert(x_i)
3. end for

Insert(x)

1. for $i = 1$ to k do
 1. compute $h_i(x)$
 2. set $B[h_i(x)] = 1$
2. end for

Remark: an entry of B may be set multiple times; only the first change has an effect.
Setting up the Bloom filter

\[S = \{x_1, x_2, x_3\} \]
\[m = k = 3 \]
\[n = 16 \]

\[\begin{array}{c}
B \quad 00010000011000100 \\
\hline
\end{array} \]

\[\begin{array}{c}
B \quad 001110000111000101 \\
\hline
\end{array} \]

\[\begin{array}{c}
B \quad 001110001111010101 \\
\hline
\end{array} \]
Bloom filter: Lookup

To check membership of an element x in S do:

\[
\text{Lookup}(x) \\
\quad \text{for } i = 1 \text{ to } k \text{ do} \\
\quad \quad \text{compute } h_i(x) \\
\quad \quad \text{if } B[h_i(x)] == 0 \text{ then} \\
\quad \quad \quad \text{return no} \\
\quad \quad \text{end if} \\
\quad \text{end for} \\
\text{return yes}
\]

Remark 3.

- If $B[h_i(x)] \neq 1$ for some i, then clearly $x \not\in S$.
- Otherwise, answer “$x \in S$” —might be a false positive!
Query: “is $x_4 \in S$?”

$$x_4 \xrightarrow{h_1(x_4)} h_1(x_4) \xrightarrow{h_2(x_4)} h_2(x_4) \xrightarrow{h_3(x_4)} h_3(x_4)$$

Lookup(x_4): $h_1(x_4)=h_1(x_4)=h_1(x_4)=1$

Answer: “yes”
After all elements from S have been hashed into the Bloom filter, the probability that a specific bit is still 0 is

$$\left(1 - \frac{1}{n}\right)^{km} \approx e^{-km/n} = p.$$

To simplify the analysis, assume that the fraction of bits that are still 0 is exactly p.

- The fraction of bits is a random variable; we assume that it takes a value equal to its expectation.

- The probability of a false positive is the probability that all k hashes evaluate to 1:

$$f = (1 - p)^k$$
Optimal number of hash functions

\[f = (1 - p)^k = (1 - e^{-km/n})^k \]

- Trade-off between \(k \) and \(p \): using more hash functions
 - gives us more chances to find a 0 when \(x \notin S \);
 - but reduces the number of 0s in the array!
- Compute optimal number \(k^* \) of hash functions by minimizing \(f \) as a function of \(k \):

 \[k^* = \left(\frac{n}{m} \right) \cdot \ln 2 \]

- Then the false positive probability is given by

 \[f = (1/2)^{k^*} \approx (0.6185)^{n/m} \]
Big savings in space

- **Space** required by Bloom filter _per element of S_: n/m bits.

- For example, set $n = 8m$. Then $k^* = 6$ and $f \approx 0.02$.

 ⇒ Small constant false positive probability by using only 8 bits (1 byte) _independently_ of the size of S!
Summary on Bloom filters

Bloom filter can answer approximate set membership in

- “constant” time (time to hash)
- constant space to represent an element from S
- constant false positive probability f.
Application 1 (historical): spell checker

- Spelling list of 210KB, 25K words.
- Use 1 byte per word.
- Maintain 25KB Bloom filter.
- False positive = accept a misspelled word.
Join: Combine two tables with a common domain into a single table.

Semi-join: A join in distributed DBs in which only the joining attribute from one site is transmitted to the other site and used for selection. The selected records are sent back.

Bloom-join: A semi-join where we send only a BF of the joining attribute.
Create a table of all employees that make \(< 50K\) and live in city where Cost Of Living = COL \(> 50K\).

<table>
<thead>
<tr>
<th>Empl</th>
<th>Sal</th>
<th>Add</th>
<th>City</th>
<th>City</th>
<th>Cost Of Living</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bale</td>
<td>90K</td>
<td>...</td>
<td>New York</td>
<td>New York</td>
<td>60K</td>
</tr>
<tr>
<td>Jones</td>
<td>45K</td>
<td>...</td>
<td>New York</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fletcher</td>
<td>45K</td>
<td>...</td>
<td>Pittsburg</td>
<td>Chicago</td>
<td>55K</td>
</tr>
<tr>
<td>Rodriguez</td>
<td>80K</td>
<td>...</td>
<td>Chicago</td>
<td></td>
<td>40K</td>
</tr>
<tr>
<td>Shaw</td>
<td>45K</td>
<td>...</td>
<td>Chicago</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Join**: send (City, COL) for COL \(> 50\).
- **Semi-join**: send just (City) for COL \(> 50\).
- **Bloom-join**: send a Bloom filter for all cities with COL \(> 50\).