Analysis of Algorithms, I
CSOR W4231

Eleni Drinea
Computer Science Department

Columbia University

Randomized quicksort, balls-in-bins
1. Randomized Quicksort

2. Occupancy problems
Today

1. Randomized Quicksort

2. Occupancy problems
Pseudocode for randomized Quicksort

Randomized-Quicksort($A, left, right$)

 if $|A| = 0$ then return // A is empty
 end if
 $split = \text{Randomized-Partition}(A, left, right)$
 Randomized-Quicksort($A, left, split - 1$)
 Randomized-Quicksort($A, split + 1, right$)

Randomized-Partition($A, left, right$)

 $b = \text{random}(left, right)$
 swap($A[b], A[right]$)
 return Partition($A, left, right$)

Subroutine $\text{random}(i, j)$ returns a random number between i and j inclusive.
> Let $T(n)$ be the expected running time of Randomized-Quicksort.

> We want to bound $T(n)$.

> Randomized-Quicksort differs from Quicksort only in how they select their pivot elements.

⇒ We will analyze Randomized-Quicksort based on Quicksort and Partition.
Pseudocode for Partition

\begin{align*}
\textbf{Partition}(A, \textit{left}, \textit{right})
\end{align*}

\begin{align*}
\textit{pivot} &= A[\textit{right}] & \text{line 1} \\
\textit{split} &= \textit{left} - 1 & \text{line 2} \\
\textbf{for} & \quad j = \textit{left} \textbf{ to } \textit{right} - 1 \quad \textbf{do} & \text{line 3} \\
\quad & \textbf{if} \ A[j] \leq \textit{pivot} \quad \textbf{then} & \text{line 4} \\
\quad & \quad \textbf{swap}(A[j], A[\textit{split} + 1]) & \text{line 5} \\
\quad & \quad \textit{split} = \textit{split} + 1 & \text{line 6} \\
\quad & \textbf{end if} & \\
\textbf{end for} & \text{ } & \\
\textbf{swap}(\textit{pivot}, A[\textit{split} + 1]) & \text{line 7} \\
\textbf{return} \ \textit{split} + 1 & \text{line 8}
\end{align*}
Few observations

1. *How many times is Partition called?*
Few observations

1. *How many times is `Partition` called?*
 At most n.

2. Further, each `Partition` call spends some work
 1. **outside** the for loop
 2. **inside** the for loop
Few observations

1. How many times is Partition called?
 At most n.

2. Further, each Partition call spends some work
 1. outside the for loop
 - every Partition spends constant work outside the for loop
 - at most n calls to Partition
 \Rightarrow total work outside the for loop in all calls to Partition is $O(n)$
 2. inside the for loop
Few observations

1. *How many times is Partition called?*
 At most \(n \).

2. Further, each *Partition* call spends some work
 1. *outside* the for loop
 - every *Partition* spends constant work outside the for loop
 - at most \(n \) calls to *Partition*
 \(\Rightarrow \) total work *outside* the for loop in all calls to *Partition* is \(O(n) \)
 2. *inside* the for loop
 - let \(X \) be the total number of comparisons performed at line 4 in all calls to *Partition*
 - each comparison may require some further constant work (lines 5 and 6)
 \(\Rightarrow \) total work *inside* the for loop in all calls to *Partition* is \(O(X) \)
Towards a bound for $T(n)$

$X = \text{the total number of comparisons in all Partition calls.}$

The running time of Randomized-Quicksort is

$$O(n + X).$$

Since X is a random variable, we need $E[X]$ to bound $T(n)$.
Towards a bound for $T(n)$

$X = \text{the total number of comparisons in all Partition calls.}$

The running time of Randomized-Quicksort is

$$O(n + X).$$

Since X is a random variable, we need $E[X]$ to bound $T(n)$.

Fact 1.

Fix any two input items. During the execution of the algorithm, they may be compared at most once.
Towards a bound for $T(n)$

$X = $ the total number of comparisons in all Partition calls.
The running time of $\text{Randomized-Quicksort}$ is

$$O(n + X).$$

Since X is a random variable, we need $E[X]$ to bound $T(n)$.

Fact 1.

Fix any two input items. During the execution of the algorithm, they may be compared at most once.

Proof.

Comparisons are only performed with the pivot of each Partition call. After Partition returns, pivot is in its final location in the output and will not be part of the input to any future recursive call.
Simplifying the analysis

- There are n numbers in the input, hence $\binom{n}{2} = \frac{n(n-1)}{2}$ distinct (unordered) pairs of input numbers.
- From Fact 1, the algorithm will perform at most $\binom{n}{2}$ comparisons.
- *What is the expected number of comparisons?*
Simplifying the analysis

- There are n numbers in the input, hence $\binom{n}{2} = \frac{n(n-1)}{2}$ distinct (unordered) pairs of input numbers.
- From Fact 1, the algorithm will perform at most $\binom{n}{2}$ comparisons.
- What is the expected number of comparisons?

To simplify the analysis

- relabel the input as z_1, z_2, \ldots, z_n, where z_i is the i-th smallest number.
- **assume** that all input numbers are distinct; thus $z_i < z_j$, for $i < j$.
Writing X as the sum of indicator random variables

Let X_{ij} be an indicator random variable such that

$$X_{ij} = \begin{cases}
1, & \text{if } z_i \text{ and } z_j \text{ are ever compared} \\
0, & \text{otherwise}
\end{cases}$$
Let X_{ij} be an indicator random variable such that

$$X_{ij} = \begin{cases}
1, & \text{if } z_i \text{ and } z_j \text{ are ever compared} \\
0, & \text{otherwise}
\end{cases}$$

The total number of comparisons is given by $X = \sum_{1 \leq i < j \leq n} X_{ij}$.
Let X_{ij} be an indicator random variable such that

$$X_{ij} = \begin{cases}
1, & \text{if } z_i \text{ and } z_j \text{ are ever compared} \\
0, & \text{otherwise}
\end{cases}$$

The total number of comparisons is given by $X = \sum_{1 \leq i < j \leq n} X_{ij}$.
$E[X] = ?$
Writing X as the sum of indicator random variables

Let X_{ij} be an indicator random variable such that

$$X_{ij} = \begin{cases}
1, & \text{if } z_i \text{ and } z_j \text{ are ever compared} \\
0, & \text{otherwise}
\end{cases}$$

The total number of comparisons is given by $X = \sum_{1 \leq i < j \leq n} X_{ij}$.

By linearity of expectation

$$E[X] = E\left[\sum_{1 \leq i < j \leq n} X_{ij} \right] = \sum_{1 \leq i < j \leq n} E[X_{ij}] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \Pr[X_{ij} = 1]$$
Writing X as the sum of indicator random variables

Let X_{ij} be an indicator random variable such that

$$X_{ij} = \begin{cases}
1, & \text{if } z_i \text{ and } z_j \text{ are ever compared} \\
0, & \text{otherwise}
\end{cases}$$

The total number of comparisons is given by $X = \sum_{1 \leq i < j \leq n} X_{ij}$. By linearity of expectation

$$E[X] = E\left[\sum_{1 \leq i < j \leq n} X_{ij} \right] = \sum_{1 \leq i < j \leq n} E[X_{ij}] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \Pr[X_{ij} = 1]$$

Goal: compute $\Pr[X_{ij} = 1]$, that is, the probability that two fixed items z_i and z_j are ever compared.
Fix two items z_i and z_j. **When are they compared?**

Notation: let $Z_{ij} = \{z_i, z_{i+1}, \ldots, z_j\}$

Consider the initial call $\text{Partition}(A, 1, n)$. Assume it picks z_k outside Z_{ij} as pivot (see figure below).

1. z_i and z_j are **not** compared in this call (*why?*).
2. All items in Z_{ij} will be greater (or smaller) than z_k, so they will all be input to the same subproblem after $\text{Partition}(A, 1, n)$ returns.
In the first Partition with $pivot \in Z_{ij} = \{z_i, \ldots, z_j\}$

The first Partition call that picks its $pivot$ from Z_{ij} determines if z_i, z_j are ever compared. Three possibilities:

1. $pivot = z_i$

2. $pivot = z_j$

3. $pivot = z_\ell$, for some $i < \ell < j$
In the first Partition with \(pivot \in Z_{ij} = \{z_i, \ldots, z_j\} \)

The first Partition call that picks its pivot from \(Z_{ij} \) determines if \(z_i, z_j \) are ever compared. Three possibilities:

1. \(pivot = z_i \)

 \(z_i \) is compared with every element in \(Z_{ij} - \{z_i\} \), thus with \(z_j \) too. \(z_i \) is placed in its final location in the output and will not appear in any future calls to Partition.

2. \(pivot = z_j \)

 \(z_j \) is compared with every element in \(Z_{ij} - \{z_j\} \), thus with \(z_i \) too. \(z_j \) is placed in its final location in the output and will not appear in any future recursive calls.

3. \(pivot = z_\ell \), for some \(i < \ell < j \)

 \(z_i \) and \(z_j \) are never compared (why?)
So z_i and z_j are compared when ...

... either of them is chosen as *pivot* in that **first** Partition call that chooses its *pivot* element from Z_{ij}.

Now we can compute $\Pr[X_{ij} = 1]$:

$$\Pr[X_{ij} = 1] = \Pr[z_i \text{ is chosen as } pivot \text{ by the first } \text{Partition that picks its } pivot \text{ from } Z_{ij}, \text{ or } z_j \text{ is chosen as } pivot \text{ by the first } \text{Partition that picks its } pivot \text{ from } Z_{ij}]$$ (1)
Suppose we are given a set of events $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n$, and we are interested in the probability that any of them happens.

Union bound: Given events $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n$, we have

$$\Pr \left[\bigcup_{i=1}^{n} \varepsilon_i \right] \leq \sum_{i=1}^{n} \Pr[\varepsilon_i].$$

Union bound for mutually exclusive events: Suppose that $\varepsilon_i \cap \varepsilon_j = \emptyset$ for each pair of events. Then

$$\Pr \left[\bigcup_{i=1}^{n} \varepsilon_i \right] = \sum_{i=1}^{n} \Pr[\varepsilon_i].$$
Computing the probability that z_i and z_j are compared

Since the two events in equation (1) are mutually exclusive, we obtain

$$\Pr[X_{ij} = 1] = \Pr[z_i \text{ is chosen as pivot by the first Partition call that picks its pivot from } Z_{ij}]$$

$$+ \Pr[z_j \text{ is chosen as pivot by the first Partition call that picks its pivot from } Z_{ij}]$$

$$= \frac{1}{j - i + 1} + \frac{1}{j - i + 1} = \frac{2}{j - i + 1},$$

(2)

since the set Z_{ij} contains $j - i + 1$ elements.
From \(\Pr[X_{ij} = 1] \) to \(E[X] \)

\[
E[X] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \Pr[X_{ij} = 1] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j - i + 1}
\]

\[
= 2 \sum_{i=1}^{n-1} \sum_{\ell=2}^{n-i+1} \frac{1}{\ell}
\]

(3)

Note that \(\sum_{\ell=1}^{k} \frac{1}{\ell} = H_k \) is the \(k \)-th harmonic number, such that

\[
\ln k \leq H_k \leq \ln k + 1
\]

(4)

Hence \(\sum_{\ell=2}^{n-i+1} \frac{1}{\ell} \leq \ln (n - i + 1) \). Substituting in (3), we get

\[
E[X] \leq 2 \sum_{i=1}^{n-1} \ln (n - i + 1) \leq 2 \sum_{i=1}^{n-1} \ln n = O(n \ln n)
\]
Equations (3), (4) also yield a lower bound of $\Omega(n \ln n)$ for $E[X]$ (show this!).

Hence $E[X] = \Theta(n \ln n)$. Then the expected running time of Randomized-Quicksort is

$$T(n) = \Theta(n \ln n)$$
1. Randomized Quicksort

2. Occupancy problems
Occupancy problems: find the distribution of balls into bins when m balls are thrown independently and uniformly at random into n bins.

Applications: analysis of randomized algorithms and data structures (e.g., hash table)

Q1: How many balls can we throw before it is more likely than not that some bin contains at least two balls?

In symbols: find k such that

$$\Pr[\exists \text{ bin with } \geq 2 \text{ balls after } k \text{ balls thrown}] > 1/2$$
Easier to think about the probability of the complementary event.

Q1 (rephrased): Find k such that

$$\Pr[\text{every bin has } \leq 1 \text{ ball after } k \text{ balls thrown}] \leq \frac{1}{2}$$
The 1st ball falls into some bin.

The 2nd ball falls into a new bin w. prob. $1 - \frac{1}{n}$.

The 3rd ball falls into a new bin (given that the first two balls fell into different bins) w. prob. $1 - \frac{2}{n}$.

The m-th ball falls into a new bin (given that the first $k - 1$ balls fell into different bins) w. prob. $1 - \frac{k-1}{n}$.

By the chain rule of conditional probability, the probability that the k-th ball falls into a new bin is given by

$$\prod_{i=1}^{k-1} \left(1 - \frac{i}{n}\right) \quad (5)$$
Application: the birthday paradox

Use $1 + x \leq e^x$ for all $x \geq 0$ to upper bound (5)

$$
\prod_{i=1}^{k-1} e^{-i/n} = e^{-\sum_{i=1}^{k-1} i/n} = e^{-\frac{k(k-1)}{(2\cdot n)}} \approx e^{-\frac{k^2}{2n}}
$$

(6)

Requiring $e^{-\frac{k^2}{2n}} < 1/2$ yields $k > \sqrt{n \cdot 2 \ln 2} = \Omega(\sqrt{n})$.

Application: birthday paradox

Assumption: For $n = 365$, each person has an independent and uniform at random birthday from among the 365 days of the year.

Once 23 people are in a room, it is more likely than not that two of them share a birthday.
More balls-in-bins questions

Q2: What is the expected load of a bin after \(m \) balls are thrown?

Q3: What is the expected number of empty bins after \(m \) balls are thrown?

Q4: What is the load of the fullest bin with high probability?

Q5: What is the expected number of balls until every bin has at least one ball (Coupon Collector’s Problem)?
Expected load of a bin

Suppose that m balls are thrown independently and uniformly at random into n bins. Fix a bin j.

- Let X_{ij} be an indicator r.v. such that $X_{ij} = 1$ if and only if ball i falls into bin j. Then

$$E[X_{ij}] = \Pr[X_{ij} = 1] = \frac{1}{n}.$$

The total number of balls in bin j is given by $X_j = \sum_{i=1}^{m} X_{ij}$. By linearity of expectation,

$$E[X_j] = \sum_{i=1}^{m} E[X_{ij}] = \frac{m}{n}.$$

Since bins are symmetric, the expected load of any bin is m/n.
Expected \# empty bins

Suppose that \(m \) balls are thrown independently and uniformly at random into \(n \) bins. Fix a bin \(j \).

- Let \(Y_j \) be an indicator r.v. such that \(Y_j = 1 \) if and only if bin \(j \) is empty.
- \(\Pr[\text{ball } i \text{ does not fall in bin } j] = 1 - 1/n \)
- \(\Pr[\text{for all } i, \text{ ball } i \text{ does not fall in bin } j] = (1 - 1/n)^m \)
- Hence \(\Pr[Y_j = 1] = (1 - 1/n)^m \).

The number of empty bins is given by the random variable \(Y = \sum_{j=1}^n Y_j \). By linearity of expectation

\[
E[Y] = \sum_{j=1}^n E[Y_j] = \left(1 - \frac{1}{n}\right)^m \approx ne^{-m/n}
\]
Proposition 1.

When throwing n balls into n bins uniformly and independently at random, the maximum load in any bin is $\Theta(\ln n/\ln \ln n)$ with probability close to 1 as n grows large.

Two-sentence sketch of the proof.

1. Upper bound the probability that any bin contains more than k balls by a union bound:
\[
\sum_{j=1}^{n} \sum_{\ell=k}^{n} \binom{n}{\ell} \left(\frac{1}{n}\right)^\ell \left(1 - \frac{1}{n}\right)^{n-\ell}.
\]

2. Compute the smallest possible k^* such that the probability above is less than $1/n$; the latter becomes negligible as n grows large.
Suppose that we throw balls independently and uniformly at random into \(n \) bins, one at a time (the first ball falls at time \(t = 1 \)).

- We call a throw a \textbf{success} if it lands in an empty bin.
- We call the sequence of balls starting after the \((j - 1)\)-st success and ending with the \(j \)-th success, the \(j \)-th \textbf{epoch}.
- Clearly the first ball is a \textbf{success}, hence ends epoch 1.
- Let \(\eta_2 \) be the \#balls thrown in epoch 2.

\[
\forall t \in \text{epoch } 2, \Pr[\text{ball } t \text{ in epoch } 2 \text{ is a success}] = \frac{n - 1}{n}
\]

- Similarly, let \(\eta_j \) be the \#balls thrown in epoch \(j \).

\[
\forall t \in \text{epoch } j, \Pr[\text{ball } t \text{ in epoch } j \text{ is a success}] = \frac{n - j + 1}{n}
\]

At the end of the \(n \)-th epoch, each of the \(n \) bins has at least one ball.
Let $\eta = \sum_{j=1}^{n} \eta_j$. We want

$$E[\eta] = E \left[\sum_{j=1}^{n} \eta_j \right] = \sum_{j=1}^{n} E[\eta_j]$$

- Each epoch is geometrically distributed with success probability $p_j = \frac{n-j+1}{n}$.
- Recall that the expectation of a geometrically distributed variable with success probability p is given by $1/p$.
- Thus $E[\eta_j] = \frac{1}{p_j} = \frac{n}{n-j+1}$.

Then

$$E[\eta] = \sum_{j=1}^{n} \frac{n}{n-j+1} = n \sum_{j=1}^{n} \frac{1}{j} = n(\ln n + O(1))$$
A sample space Ω consists of the possible outcomes of an experiment.

Each point x in the sample space has an associated probability mass $p(x) \geq 0$, such that $\sum_{x \in \Omega} p(x) = 1$.

Example experiment: flip a fair coin; $\Omega = \{\text{heads, tails}\}$; $\Pr[\text{heads}] = \Pr[\text{tails}] = 1/2$.

We define an event \mathcal{E} to be any subset of Ω, that is, a collection of points in the sample space.

We define the probability of the event to be the sum of the probability masses of all the points in \mathcal{E}. That is,

$$\Pr[\mathcal{E}] = \sum_{x \in \mathcal{E}} p(x)$$