More dynamic programming: sequence alignment
1 Sequence alignment
String similarity

This problem arises when comparing strings.

Example: consider an online dictionary.

- **Input:** a word, e.g., “ocurrance”
- **Output:** did you mean “occurrence”?

Similarity: intuitively, two words are similar if we can “almost” line them up by using gaps and mismatches.
Aligning strings using gaps and mismatches

We can align “occurance” and “occurrence” using

- one gap and one mismatch

```
  o c u r r a n c e
  o c c u r r e n c e
```

- or, three gaps

```
  o  c  u  r  r  a  n  c  e
  o c c u r r e n c e
```
Similarity of English words is rather intuitive.

Determining similarity of biological strings is a central computational problem for molecular biologists.

- Chromosomes again: an organism’s genome (set of genetic material) consists of chromosomes (giant linear DNA molecules).
- We may think of a chromosome as an enormous linear tape containing a string over the alphabet \{A, C, G, T\}.
- The string encodes instructions for building protein molecules.
Why similarity?

Why are we interested in similarity of biological strings?

- Roughly speaking, the sequence of symbols in an organism’s genome determines the properties of the organism.

- So similarity can guide decisions about biological experiments.

How do we define similarity between two strings?
Informally, an alignment between two strings tells us which pairs of positions will be lined up with one another.

Example: $X = \text{GCAT}, Y = \text{CATG}$

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>C</td>
<td>A</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>A</td>
<td>T</td>
</tr>
<tr>
<td>y_1</td>
<td>y_2</td>
<td>y_3</td>
<td>y_4</td>
</tr>
</tbody>
</table>

The set of pairs $\{(2, 1), (3, 2), (4, 3)\}$ is an alignment of X, Y: these are the pairs of positions in X, Y that are matched.
Definition of alignment of two strings

An alignment L of $X = x_1 \ldots x_m$, $Y = y_1 \ldots y_n$ is a set of ordered pairs of indices (i, j) with $i \in [1, m]$, $j \in [1, n]$ such that the following two properties hold:

- **P1.** every $i \in [1, m]$, $j \in [1, n]$ appears at most once in L;
- **P2.** pairs do not cross: if $(i, j), (i', j') \in L$ and $i < i'$, then $j < j'$.

Example: $X = \text{GCAT}$, $Y = \text{CATG}$

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>C</td>
<td>A</td>
<td>T</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>C</td>
<td>A</td>
<td>T</td>
<td>G</td>
</tr>
<tr>
<td>y_1</td>
<td>y_2</td>
<td>y_3</td>
<td>y_4</td>
<td></td>
</tr>
</tbody>
</table>

1. $\{(2, 1), (3, 2), (4, 3)\}$ is an alignment; but
2. $\{(2, 1), (3, 2), (4, 3), (1, 4)\}$ is not an alignment (violates P2).
Let L be an alignment of $X = x_1 \ldots x_m$, $Y = y_1 \ldots y_n$.

1. **Gap penalty** δ: there is a cost δ for every position of X and every position of Y that is not matched.

2. **Mismatch cost**: there is a cost α_{pq} for every pair of alphabet symbols p, q that are matched in L.
 - So every pair $(i, j) \in L$ incurs a cost of $\alpha_{x_i y_j}$.
 - **Assumption**: $\alpha_{pp} = 0$ for every symbol p (matching a symbol with itself incurs no cost).

The cost of alignment L is the sum of all the gap and the mismatch costs.
In symbols, given alignment L, let

- $X^L_i = 1$ iff position i of X is not matched (gap),
- $Y^L_j = 1$ iff position j of Y is not matched (gap).

Then the cost of alignment L is given by

$$\text{cost}(L) = \sum_{1 \leq i \leq m} X^L_i \delta + \sum_{1 \leq j \leq n} Y^L_j \delta + \sum_{(i,j) \in L} \alpha_{x_i y_j}$$
Example 1.

Let L_1 be the alignment shown below.

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>x_6</th>
<th>x_7</th>
<th>x_8</th>
<th>x_9</th>
</tr>
</thead>
<tbody>
<tr>
<td>o</td>
<td>c</td>
<td>-</td>
<td>u</td>
<td>r</td>
<td>r</td>
<td>a</td>
<td>n</td>
<td>c</td>
</tr>
<tr>
<td>o</td>
<td>c</td>
<td>c</td>
<td>u</td>
<td>r</td>
<td>r</td>
<td>e</td>
<td>n</td>
<td>c</td>
</tr>
<tr>
<td>y_1</td>
<td>y_2</td>
<td>y_3</td>
<td>y_4</td>
<td>y_5</td>
<td>y_6</td>
<td>y_7</td>
<td>y_8</td>
<td>y_9</td>
</tr>
</tbody>
</table>
Example 1.

Let L_1 be the alignment shown below.

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>x_6</th>
<th>x_7</th>
<th>x_8</th>
<th>x_9</th>
</tr>
</thead>
<tbody>
<tr>
<td>o</td>
<td>c</td>
<td>-</td>
<td>u</td>
<td>r</td>
<td>r</td>
<td>a</td>
<td>n</td>
<td>c</td>
</tr>
<tr>
<td>o</td>
<td>c</td>
<td>c</td>
<td>u</td>
<td>r</td>
<td>r</td>
<td>e</td>
<td>n</td>
<td>c</td>
</tr>
<tr>
<td>y_1</td>
<td>y_2</td>
<td>y_3</td>
<td>y_4</td>
<td>y_5</td>
<td>y_6</td>
<td>y_7</td>
<td>y_8</td>
<td>y_9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>y_{10}</td>
</tr>
</tbody>
</table>

$L_1 = \{(1, 1), (2, 2), (3, 4), (4, 5), (5, 6), (6, 7), (7, 8), (8, 9), (9, 10)\}$

$\text{cost}(L_1) = \delta + \alpha_{ae}$ \hspace{1em} (This is $Y_3^{L_1} + \alpha_{x_6y_7}$.)
Example 2.

Let L_2 be the alignment shown below.

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>x_6</th>
<th>x_7</th>
<th>x_8</th>
<th>x_9</th>
</tr>
</thead>
<tbody>
<tr>
<td>o</td>
<td>o</td>
<td>c</td>
<td>u</td>
<td>r</td>
<td>r</td>
<td>-</td>
<td>a</td>
<td>n</td>
<td>c</td>
</tr>
<tr>
<td>o</td>
<td>c</td>
<td>c</td>
<td>u</td>
<td>r</td>
<td>r</td>
<td>e</td>
<td>-</td>
<td>n</td>
<td>c</td>
</tr>
<tr>
<td>y_1</td>
<td>y_2</td>
<td>y_3</td>
<td>y_4</td>
<td>y_5</td>
<td>y_6</td>
<td>y_7</td>
<td>y_8</td>
<td>y_9</td>
<td>y_{10}</td>
</tr>
</tbody>
</table>
Example 2.

Let L_2 be the alignment shown below.

\[
\begin{array}{cccccccccccc}
 x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & x_8 & x_9 \\
 o & - & c & u & r & r & - & a & n & c & e \\
 o & c & c & u & r & r & e & - & n & c & e \\
 y_1 & y_2 & y_3 & y_4 & y_5 & y_6 & y_7 & y_8 & y_9 & y_{10} \\
\end{array}
\]

$L_1 = \{(1, 1), (2, 3), (3, 4), (4, 5), (5, 6), (7, 8), (8, 9), (9, 10)\}$

$cost(L_2) = 3\delta$ \(\text{(This is } X_6^{L_2} + Y_2^{L_2} + Y_7^{L_2}.\text{)}\)
Example 3.

Let L_3, L_4 be the alignments shown below.

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>C</td>
<td>A</td>
<td>T</td>
</tr>
<tr>
<td>C</td>
<td>A</td>
<td>T</td>
<td>G</td>
</tr>
<tr>
<td>y_1</td>
<td>y_2</td>
<td>y_3</td>
<td>y_4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>C</td>
<td>A</td>
<td>T</td>
</tr>
<tr>
<td>-</td>
<td>C</td>
<td>A</td>
<td>T</td>
</tr>
<tr>
<td>y_1</td>
<td>y_2</td>
<td>y_3</td>
<td>y_4</td>
</tr>
</tbody>
</table>
Example 3.

Let L_3, L_4 be the alignments shown below.

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>G</td>
<td>C</td>
<td>A</td>
<td>T</td>
</tr>
<tr>
<td>y_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y_2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y_3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y_4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$L_3 = \{(1, 1), (2, 2), (3, 3), (4, 4)\}$

$cost(L_3) = \alpha_{GC} + \alpha_{CA} + \alpha_{AT} + \alpha_{TG}$

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>G</td>
<td>C</td>
<td>A</td>
<td>T</td>
</tr>
<tr>
<td>y_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y_2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y_3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y_4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$L_4 = \{(2, 1), (3, 2), (4, 3)\}$

$cost(L_4) = 2\delta$
The sequence alignment problem

Input:
- two strings X, Y consisting of m, n symbols respectively; each symbol is from some alphabet Σ
- the gap penalty δ
- the mismatch costs $\{\alpha_{pq}\}$ for every pair $(p, q) \in \Sigma^2$

Output: the minimum cost to align X and Y, and an optimal alignment.
Claim 1.

Let L be the optimal alignment. Then either

1. the last two symbols x_m, y_n of X, Y are matched in L, hence the pair $(m, n) \in L$; or

2. x_m, y_n are not matched in L, hence $(m, n) \not\in L$.
 In this case, at least one of x_m, y_n is not matched in L, hence at least one of m, n does not appear in L.
Proof of Claim 1

By contradiction.

Suppose \((m, n) \notin L\) but \(x_m\) and \(y_n\) are both matched in \(L\). That is,

1. \(x_m\) is matched with \(y_j\) for some \(j < n\), hence \((m, j) \in L\);
2. \(y_n\) is matched with \(x_i\) for some \(i < m\), hence \((i, n) \in L\).

Since pairs \((i, n)\) and \((m, j)\) cross, \(L\) is not an alignment.
The following equivalent way of stating Claim 1 will allow us to easily derive a recurrence.

Fact 4.

In an optimal alignment L, at least one of the following is true

1. $(m,n) \in L$; or
2. x_m is not matched; or
3. y_n is not matched.
The subproblems for sequence alignment

Let

\[OPT(i, j) = \text{minimum cost of an alignment between } x_1 \ldots x_i, y_1 \ldots y_j \]

We want \(OPT(m, n) \). From Fact 4,

1. If \((m, n) \in L\), we pay \(\alpha x_m y_n + OPT(m - 1, n - 1) \).
2. If \(x_m \) is not matched, we pay \(\delta + OPT(m - 1, n) \).
3. If \(y_n \) is not matched, we pay \(\delta + OPT(m, n - 1) \).

How do we decide which of the three to use for \(OPT(m, n) \)?
The recurrence for the sequence alignment problem

\[OPT(i, j) = \begin{cases}
 j\delta, & \text{if } i = 0 \\
 \min \begin{cases}
 \alpha x_i y_j + OPT(i - 1, j - 1) \\
 \delta + OPT(i - 1, j) \\
 \delta + OPT(i, j - 1)
 \end{cases}, & \text{if } i, j \geq 1 \\
 i\delta, & \text{if } j = 0
\end{cases} \]

Remarks

- Boundary cases: \(OPT(0, j) = j\delta \) and \(OPT(i, 0) = i\delta \).
- Pair \((i, j)\) appears in the optimal alignment for subproblem \(x_1 \ldots x_i, y_1 \ldots y_j \) if and only if the minimum is achieved by the first of the three values inside the \text{min} computation.
Computing the cost of the optimal alignment

- M is an $(m + 1) \times (n + 1)$ dynamic programming table.
- Fill in M so that all subproblems needed for entry $M[i, j]$ have already been computed when we compute $M[i, j]$ (e.g., column-by-column).

\[
\begin{array}{cccccc}
0 & 1 & j-1 & j & n \\
0 & & & & \\
i-1 & & & & \\
i & & & & \\
m & & & & \\
\end{array}
\]
Pseudocode

SequenceAlignment(X, Y)

Initialize $M[i, 0]$ to $i\delta$
Initialize $M[0, j]$ to $j\delta$

for $j = 1$ to n do
 for $i = 1$ to m do
 \[M[i, j] = \min \{ \alpha_{x_i y_j} + M[i - 1, j - 1], \delta + M[i - 1, j], \delta + M[i, j - 1] \} \]
 end for
end for

return $M[m, n]$

Running time?
Reconstructing the optimal alignment

Given M, we can reconstruct the optimal alignment as follows.

TraceAlignment(i, j)

if $i == 0$ or $j == 0$ then return
else
 if $M[i, j] == \alpha_{x_i y_j} + M[i - 1, j - 1]$ then
 TraceAlignment($i - 1, j - 1$)
 Output (i, j),
 else
 if $M[i, j] == \delta + M[i - 1, j]$ then TraceAlignment($i - 1, j$)
 else TraceAlignment($i, j - 1$)
 end if
end if
end if

Initial call: TraceAlignment(m, n)
Running time?
Resources used by dynamic programming algorithm

- Time: $O(mn)$
- Space: $O(mn)$
 - English words: $m, n \leq 10$
 - Computational biology: $m = n = 100000$
 - Time: 10 billion ops
 - Space: 10GB table!

- *Can we avoid using quadratic space while maintaining quadratic running time?*
Using only $O(m + n)$ space

1. First, suppose we are only interested in the **cost** of the optimal alignment.
 Easy: keep a table M with 2 columns, hence $2(m + 1)$ entries.

2. **What if we want the optimal alignment too?**
 - No longer possible in $O(n + m)$ time.