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Complexity classes P , NP and NP-complete

Definition 1.

We define P to be the set of problems that can be solved by
polynomial-time algorithms.

Definition 2.

We define NP to be the set of decision problems that have an
efficient certifier.

Fact 3.

P ⊆ NP

Definition 4.

A problem X(D) is NP-complete if

1. X(D) ∈ NP and

2. for all Y ∈ NP, Y ≤P X.



Why we should care whether a problem is NP-complete

If a problem is NP-complete, we need to stop looking for
efficient algorithms for the general problem.

Instead we have a number of options, such as

1. approximation algorithms
I mathematically rigorous basis to study heuristics
I distinguish between various optimization problems in terms

of how well they can be approximated

2. work on interesting special cases

3. study the average performance of the algorithm

4. heuristics



How do we show that a problem is NP-complete?

Suppose we had an NP-complete problem X.

To show that another problem Y is NP-complete, we use
transitivity of reductions. So we “only” need show that

1. Y ∈ NP
2. X ≤P Y

The first NP-complete problem

Theorem 5 (Cook-Levin).

Circuit SAT is NP-complete.



Satisfiability of boolean functions

SAT: Given a formula φ in CNF with n variables and m clauses,
is φ satisfiable?

3SAT: Given a formula φ in CNF with n variables and m clauses
such that each clause has exactly 3 literals, is φ satisfiable?

Circuit-SAT: Given a boolean combinatorial circuit C, is there
an assignment of truth values to its inputs that causes the
output to evaluate to 1?

Lemma 6.

Circuit-SAT ≤P SAT, SAT ≤P 3SAT and 3SAT ≤P IS(D)



Independent set

So far, we have stated (with or without proofs) that

I Circuit-SAT is NP-complete

I Circuit-SAT ≤P SAT

I SAT ≤P 3SAT

⇒ SAT and 3SAT are NP-complete.

Is IS(D) as “hard” as SAT?



Independent set

So far, we have stated (with or without proofs) that

I Circuit-SAT is NP-complete

I Circuit-SAT ≤P SAT

I SAT ≤P 3SAT

⇒ SAT and 3SAT are NP-complete.

Claim 1.

IS(D) is NP-complete.

Proof.

Reduction from 3SAT.



Structure of the proof

Given an arbitrary instance formula φ of 3SAT, we need to
transform it into a graph G and an integer k, so that

1. The transformation is completed in polynomial time.

2. The instance (G, k) is a yes instance of IS(D)

if and only if

φ is a yes instance of 3SAT.



Structure of the proof

Given an arbitrary instance formula φ of 3SAT, we need to
transform it into a graph G and an integer k, so that

1. The transformation is completed in polynomial time.

2. G has an independent set of size at least k

if and only if

φ is satisfiable

Example: given

φ = (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ ¬x2 ∨ ¬x3)

construct
(G, k)



Structure of the proof

Given an arbitrary instance formula φ of 3SAT, we need to
transform it into a graph G and an integer k, so that

1. The transformation is completed in polynomial time.

2. G has an independent set of size at least k

if and only if

φ is satisfiable.

Remark 1.

I Heart of reduction X ≤P Y: understand why some small
instance of Y makes it difficult.

I For IS(D), such an instance is a triangle: it’s not clear
which of its vertices to add to our independent set.



Gadgets!

When reducing from 3SAT, we often use gadgets. Gadgets are
constructions that ensure:

1. Consistency of truth values in a truth assignment: once xi
is assigned a truth value, we must henceforth consistently
use it under this truth value.

2. Clause constraints: since φ is in CNF, we must provide a
way to satisfy every clause. Equivalently, we must exhibit
at least one literal that is set to 1 in every clause.

In effect, these gadgets will allow us to derive a valid and
satisfying truth assignment for φ when the transformed instance
is a yes instance of our problem, so we can prove equivalence of
the two instances.



Gadgets for IS(D)

Clause constraint gadget: for every clause, introduce a triangle
where a node is labelled by a literal in the clause.

x₁

x2 x₃

x₁

x2 x₃

x₁

x2 x₃

Example: ϕ = (x₁ ∨ x2 ∨ x₃% ∧ (¬x₁ ∨ x₂ ∨ ¬x₃% ∧ (x₁∨ ¬x₂ ∨ ¬x₃%

I Hence our graph G consists of m isolated triangles.

I The max independent set in this graph has size m: pick
one vertex from every triangle. So we will set k = m.

Goal: derive a truth assignment from our independent set S.
Idea: when a node from a triangle is added to S, set the
corresponding literal to 1.



Consistency gadgets

2. Is this truth assignment consistent?
I Suppose x1 was picked from the first triangle.
I Can still pick x1 from the second triangle!
I But then we are setting x1 to both 1 and 0.
⇒ This is obviously not a valid truth assignment!

Consistency of truth assignment: must ensure that we cannot
add a node labelled xi and a node labelled xi to our
independent set.



Consistency gadgets

2. Is this truth assignment consistent?
I Suppose x1 was picked from the first triangle.
I Can still pick x1 from the second triangle!
I But then we are setting x1 to both 1 and 0.
⇒ This is obviously not a valid truth assignment!

Consistency of truth assignment: must ensure that we cannot
add a node labelled xi and a node labelled xi to our
independent set.

Consistency gadget: add edges between all occurrences of xi
and xi, for every i, in G.



Constructed instance (G, k) of IS(D)

x₁

x2 x3

¬x₁

x2 ¬x3

x₁

¬x2 ¬x3

ϕ = (x₁ ∨ x2 ∨ x3% ∧ (¬x₁ ∨ x2 ∨ ¬x3% ∧ (x₁ ∨ ¬x2 ∨ ¬x3%,

Example:  given the formula ϕ below (n=m=3)

the derived graph G is as follows:

Set k=m=3; the input instance R(ϕ) to IS(D) is (G, 3).

Remark: the construction requires time polynomial in the size of φ.



Proof of equivalence

We need to show that

φ is satisfiable

if and only if

G has an independent set of size at least m



Proof of equivalence, reverse direction

I Suppose that G has an independent set S of size m.

I Then every triangle contributes one node to S.

I Define the following truth assignment

I Set the literal corresponding to that node to 1.

I Any variables left unset by this assignment may be set to
0 or 1 arbitrarily.

x₁

x2 x₃

¬x₁

x2 ¬x₃

x₁

¬x2 ¬x₃

ϕ = (x₁ ∨ x2 ∨ x₃% ∧ (¬x₁ ∨ x₂ ∨ ¬x₃% ∧ (x₁∨ ¬x₂ ∨ ¬x₃%

Derived truth assignment: x₁=1, x2=1, x₃=0  

Independent set S = {x₁, x2, x₁}



Proof of equivalence, reverse direction

I Suppose that G has an independent set S of size m.

I Then every triangle contributes one node to S.

I Define the following truth assignment

I Set the literal corresponding to that node to 1.

I Any variables left unset by this assignment may be set to
0 or 1 arbitrarily.

We need to show that this truth assignment

1. is valid

2. satisfies φ



Proof of equivalence, reverse direction

I Suppose that G has an independent set S of size m.

I Then every triangle contributes one node to S.

I Define the following truth assignment

I Set the literal corresponding to that node to 1.

I Any variables left unset by this assignment may be set to
0 or 1 arbitrarily.

We need to show that this truth assignment

1. is valid: by construction, xi, xi cannot both appear in S.

2. satisfies φ: since every triangle contributes one node to S,
every clause has a true literal, thus every clause is satisfied.



Proof of equivalence, forward direction

I Now suppose there is a satisfying truth assignment for φ.

I Then there is (at least) one true literal in every clause.

I Construct an independent set S as follows:
From every triangle, add to S a node labelled by such a
literal; hence S has size m.

We claim that S thus constructed is indeed an independent set.



Proof of equivalence, forward direction

I Now suppose there is a satisfying truth assignment for φ.

I Then there is (at least) one true literal in every clause.

I Construct an independent set S as follows:
From every triangle, add to S a node labelled by such a
literal; hence S has size m.

We claim that S thus constructed is indeed an independent set.

1. S would not be an independent set if there was an edge
between any two nodes in it.

2. Since all nodes in S belong to different triangles, an edge
implies that the two nodes are labelled by opposite literals.

3. Impossible: all literals in S evaluate to 1.



Common pitfalls when showing NP-completeness

1. Carry out the reduction in the wrong direction

2. Reduce from a problem not known to be NP-complete

3. Exponential-time transformations
I Subsets, permutations

4. Neglect to carefully prove both directions of equivalence of
the original and the derived instances; that is, x is a yes
instance of X if and only if y = R(x) is a yes instance of Y

5. Neglect to show that the problem is in NP

Suggestions

I You should think carefully which problem is most suitable
to reduce from

I In absence of other ideas, reduce from 3SAT
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The Traveling Salesman Problem (TSP)

Tour: a simple cycle that visits every vertex exactly once.

Definition 7 (TSP(D)).

Given n cities {1, . . . , n}, a set of non-negative distances dij
between every pair of cities and a budget B, is there a tour of
length ≤ B?

Equivalently, is there a permutation π such that

1. π(1) = π(n+ 1) = 1; that is, we start and end at city 1

2. the total distance travelled satisfies

n∑
i=1

dπ(i)π(i+1) ≤ B

Application: Google street view car



Example instance of TSP

3

1

2

4

10

6

9

9

5

3

Depending on the distances, TSP instances may be

I Asymmetric: dij 6= dji

I Symmetric: dij = dji

I Metric: satisfy the triangle inequality dij ≤ dik + dkj

I Euclidean: e.g., cities are in R2 hence city i corresponds to point
(xi, yi); then dij =

√
(xi − xj)2 + (yi − yj)2



A related problem and hardness of TSP(D)

Hamiltonian Cycle: Given a graph G = (V,E), is there a
simple cycle that visits every vertex exactly once?

Claim 2.

Hamiltonian Cycle is NP-complete.

Proof: Reduction from 3SAT (e.g., see your textbook).

Claim 3.

TSP(D) is NP-complete.

Proof: reduction from Hamiltonian Cycle.



Proof of Claim 3 (Hamiltonian Cycle ≤P TSP(D))

1. Start from an arbitrary instance of Hamiltonian Cycle, that is,
an undirected graph G = (V,E).

2. Construct the following instance (G′ = (V ′, E′, w), B) of TSP(D):
G′ is a complete weighted graph with V ′ = V such that for every
edge e ∈ E′,

we =

{
1, if e ∈ E
2, otherwise

3. Set the budget B = n.

This completes the reduction transformation.

Equivalence of the instances is straightforward:

I If G has a hamiltonian cycle, that cycle is a tour of length n in
G′.

I If G′ has a tour of length n, it must consist of edges of weight 1
(why?); thus all these edges appear in G.



Concluding remarks on TSP

I Claim 2 also holds for directed Hamiltonian cycle. An
exact analog of the proof of Claim 3 then shows that
asymmetric TSP is NP-complete.

I It is possible to reduce Hamiltonian cycle to Euclidean

TSP, thus showing that even Euclidean TSP is
NP-complete.

I However, these problems are not similar in terms of how
well they can be approximated: it is possible to provide
very good approximate solutions to Euclidean TSP, which
is not the case for Symmetric TSP.



Packing and partitioning problems

I Set Packing: given a set U of n elements, a collection
S1, S2, . . . , Sm of subsets of U , and a number k, is there a
collection of at least k subsets such that no two of them
intersect?

I 3D-Matching: Given disjoint sets B,G,H, each of size n,
and a set of triples T ⊆ B ×G×H, is there a set of n
triples in T , no two of which have an element in common?

Reduction from 3SAT.



Numerical problems

I Subset sum: Given natural numbers w1, . . . , wn and a
(large) target weight W , is there a subset of w1, . . . , wn
that adds up exactly to W?

Applications: cryptography, scheduling

I Minimum-weight solution to linear equations: Given
a system of linear equations in n variables with integer
constants, and an integer B ≤ n, does it have a rational
solution with at most B non-zero entries?

Applications: coding theory, signal processing



Similar problems with very different complexities

NP P
max cut min cut

longest path shortest path

3D matching matching

Hamiltonian cycle Euler cycle

3-colorability 2-colorability

3-SAT 2-SAT

LCS of n sequences LCS of 2 sequences

More on NP-completeness:

I Computers and Intractability: A guide to the theory of

NP-completeness, by Garey and Johnson

I Computational Complexity, by C. Papadimitriou
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Minimum-weight Set Cover

Input

I a set E = {e1, e2, . . . , en} of n elements

I a collection of subsets of these elements S1, S2, . . . , Sm,
where each Sj ⊆ E

I a non-negative weight wj for every subset Sj

Output

A minimum-weight collection of subsets that cover all of E.

In symbols: find an I ⊆ {1, . . . ,m} such that ∪i∈ISi = E and∑
i∈I

wi is minimum.

(Unweighted Set Cover: wj = 1 for all j)



Example instance of Set Cover

1 1

1

1

1+ε 1+ε

n = 8 ground elements, m = 6 subsets with weights
w1 = w2 = w3 = w4 = 1, w5 = w6 = 1 + ε (0 < ε < 1/2)



Motivation: detect computer viruses

Goal: detect features of viruses that do not occur in typical
applications

I Ground elements: computer viruses (n ≈ 150)

I Sets: labelled by some three-byte sequence occurring in
these viruses but not occurring in typical computer
applications (m ≈ 21000); each set consisted of all the
viruses that contained the three-byte sequence

I Goal: output a small number of such sequences (much
smaller than 150) that cover all known viruses



Reduction via generalization

Claim 4.

Set-Cover(D) is NP-complete.

Proof.

Reduction from VC(D).

I Let E = {e1, . . . , em} be the set of edges in the graph
I These are the ground elements we are trying to cover.

I Let Sj be the set of edges (ground elements) that are
covered by vertex i.

I A vertex j covers all edges adjacent to it.

I Set wj = 1 for all 1 ≤ j ≤ n.

Equivalence of instances: input graph has a vertex cover of size
k if and only if E can be covered by k sets.
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