Analysis of Algorithms, I CSOR W4231.002

Eleni Drinea Computer Science Department

Columbia University

Thursday, April 21, 2016

1 Review of last lecture

2 Integer Programming

3 Minimum-weight Set Cover
An integer programming formulation of Set Cover
The linear program relaxation

4 An approximation algorithm for Set CoverRounding the LP solution

An *f*-approximation algorithm for Set Cover

1 Review of last lecture

- 2 Integer Programming
- 3 Minimum-weight Set Cover
 An integer programming formulation of Set Cover
 The linear program relaxation
- 4 An approximation algorithm for Set Cover
 Rounding the LP solution
 An *f*-approximation algorithm for Set Cove

We may rewrite any LP as follows (*think about it!*).

- 1. It is either a maximization or a minimization
- 2. All constraints are inequalities in the same direction
- 3. All variables are non-negative

This results in an LP of the following form

$$\max_{\mathbf{x} \ge \mathbf{0}} \mathbf{c}^T \mathbf{x}$$
subject to $A\mathbf{x} \le \mathbf{b}$

Then the dual is given as follows:

$$\begin{array}{ll} \min_{\mathbf{y} \ge \mathbf{0}} & \mathbf{b}^T \mathbf{y} \\ \text{subject to} & A^T \mathbf{y} \ge \mathbf{c} \end{array}$$

By construction, we know that any feasible solution to the dual is an upper bound for the primal (weak duality). Hence

$$\mathbf{c}^T \mathbf{x} \le \mathbf{b}^T \mathbf{y}$$

What if the primal is unbounded? What if the dual is unbounded?

Interpreting the dual LP (case study: max flow)

$$\max_{f_{ij} \ge 0} \sum_{\substack{j:(s,j) \in E}} f_{sj}$$
s.t.
$$\sum_{j:(i,j) \in E} f_{ij} - \sum_{j:(j,i) \in E} f_{ji} = \begin{cases} \sum_{\substack{j:(s,j) \in E} \\ -\sum_{\substack{j:(s,j) \in E} \\ j:(s,j) \in E} \end{cases}} f_{sj}, & \text{if } i = s \\ -\sum_{\substack{j:(s,j) \in E} \\ 0, \text{ otherwise}} \end{cases}$$
and
$$f_{ij} \le c_{ij}, \qquad \text{for all } (i,j) \in E$$

- We want to maximize the flow out of source s.
- The entire flow must get routed to sink t.
- ▶ At intermediate nodes we must have flow conservation.

$$\min_{\substack{q \ge 0, p}} \sum c_{ij} q_{ij}$$

subject to $p_j - p_i \le q_{ij}$ $((i, j) \in E)$
 $p_t - p_s = 1$

This is a minimum cut problem. Why?

$$\min_{\substack{q \ge 0, p}} \sum c_{ij} q_{ij}$$

subject to $p_j - p_i \le q_{ij}$ $((i, j) \in E)$
 $p_t - p_s = 1$

This is a minimum cut problem. Why?

At an optimal solution, nodes for which $p_i = 0$ are in S, and nodes for which $p_i = 1$ are in T, and (S, T) defines an *s*-*t* cut. We have

$$q_{ij} = \begin{cases} 0 & \text{if nodes } i, j \text{ are in the same set} \\ 1 & \text{otherwise} \end{cases}$$

so the objective value is the capacity of the (S, T) cut.

$$\min_{\substack{q \ge 0, p}} \sum c_{ij} q_{ij}$$

subject to $p_j - p_i \le q_{ij}$ $((i, j) \in E)$
 $p_t - p_s = 1$

This is a minimum cut problem. Why?

Strong duality

 $maximum \ flow = minimum \ cut$

1 Review of last lecture

2 Integer Programming

3 Minimum-weight Set Cover An integer programming formulation of Set Cover The linear program relaxation

4 An approximation algorithm for Set Cover
Rounding the LP solution
An *f*-approximation algorithm for Set Cov

Example:

Integer programming (IP(D)): Given a system of linear inequalities in n variables and m constraints with integer coefficients and a integer target value k, does it have an integer solution of value k?

▶ Applications: production planning, scheduling trains, etc.

 $\begin{array}{ll} \max & \mathbf{c}^T \mathbf{x} \\ \text{subject to} & A \mathbf{x} \leq \mathbf{b} \\ & \mathbf{x} \in \mathbf{Z}^n \end{array}$

Here A is an $m \times n$ matrix, $\mathbf{b} \in \mathbf{R}^m$, $\mathbf{c} \in \mathbf{R}^n$, \mathbf{x} is an integer vector with n components.

What does the set of feasible solutions look like?

Rounding the LP is often insufficient

Is IP(D) hard?

- IP(D) is in \mathcal{NP} .
- ▶ We can quickly solve LPs with several thousands of variables and constraints but there exist integer programs with 10 variables and 10 constraints that are very hard to solve.

Is IP(D) hard?

- IP(D) is in \mathcal{NP} .
- ▶ We can quickly solve LPs with several thousands of variables and constraints but there exist integer programs with 10 variables and 10 constraints that are very hard to solve.
- ▶ This is not too surprising: integer programs restricted to solutions $\mathbf{x} \in \{0, 1\}^n$ model **yes/no** decisions, which are generally hard.
- ▶ To formalize this intuition, we will reduce an \mathcal{NP} -complete problem to IP(D).

Integer Programs for Vertex Cover and IS

First we formulate integer programs for two \mathcal{NP} -hard problems.

IP for Independent Set:

$$\begin{array}{ll} \max & \sum_{i=0}^{n} x_{i} \\ \text{subject to} & x_{i} + x_{j} \leq 1, \quad \text{for every } (i,j) \in E \\ & x_{i} \in \{0,1\}, \quad \text{for every } i \in V \end{array}$$

IP for Vertex Cover:

$$\begin{array}{ll} \min & \sum_{i=0}^{n} x_{i} \\ \text{subject to} & x_{i} + x_{j} \geq 1, \quad \text{for every } (i,j) \in E \\ & x_{i} \in \{0,1\}, \quad \text{for every } i \in V \end{array}$$

IP(D) is \mathcal{NP} -complete

Claim 1.

 $VC(D) \leq_P IP(D)$

Proof.

Reduction from arbitrary instance (G = (V, E), k) of VC(D) to the following integer program with target value k:

$$\sum_{i=1}^{n} x_{i} \leq k$$

subject to $x_{i} + x_{j} \geq 1$, for every $(i, j) \in E$
 $x_{i} \in \{0, 1\}$, for every $i \in V$

Equivalence of the instances is straightforward.

Similar problems with very different complexities (new)

\mathcal{NP}	\mathcal{P}
max cut	min cut
longest path	shortest path
3D matching	matching
Hamiltonian cycle	Euler cycle
3-colorability	2-colorability
3-SAT	2-SAT
LCS of n sequences	LCS of 2 sequences
integer programming	linear programming

The theory of integer and linear programming and duality can guide the design of approximation algorithms for hard problems.

1 Review of last lecture

- 2 Integer Programming
- 3 Minimum-weight Set Cover
 An integer programming formulation of Set Cover
 The linear program relaxation
- An approximation algorithm for Set Cover
 Rounding the LP solution
 An *f*-approximation algorithm for Set Cove

Input

- a set $E = \{e_1, e_2, \dots, e_n\}$ of n elements
- ▶ a collection of subsets of these elements S_1, S_2, \ldots, S_m , where each $S_j \subseteq E$
- a non-negative weight w_j for every subset S_j

Output

A minimum-weight collection of subsets that cover all of E.

In symbols: find an $I \subseteq \{1, ..., m\}$ such that $\bigcup_{i \in I} S_i = E$ and $\sum_{i \in I} w_i$ is minimum.

(Unweighted Set Cover: $w_j = 1$ for all j)

Example instance of Set Cover

n = 8 ground elements, m = 6 subsets with weights $w_1 = w_2 = w_3 = w_4 = 1$, $w_5 = w_6 = 1 + \epsilon$.

Motivation: detect features of virus es that do not occur in typical applications

- Ground elements: computer viruses $(n \approx 150)$
- ▶ Sets: labelled by some three-byte sequence occurring in these viruses but not occurring in typical computer applications ($m \approx 21000$); each set consisted of all the viruses that contained the three-byte sequence
- ▶ **Objective**: output a small number of such sequences (much smaller than 150) that *cover* all known viruses

Claim 2.

Set-Cover(D) is \mathcal{NP} -complete.

Proof.

Reduction from VC(D). Input instance: (G = (V, E), k).

- Set $E = \{e_1, \ldots, e_m\}$ to be the set of ground elements we want to *cover*.
- ▶ For every vertex j, set S_j to be the set of edges (ground elements) that are incident to -hence *covered* by- vertex j.

• Set
$$w_j = 1$$
 for all $1 \le j \le n$.

Equivalence of instances: input graph has a vertex cover of size k if and only if E has a set cover of weight k.

Variables: we introduce one variable per set S_j ; intuitively,

$$x_j = \begin{cases} 1, & \text{if } S_j \text{ is included in the solution} \\ 0, & \text{otherwise} \end{cases}$$

Constraints: ensure that every element is *covered*:

for every element e_i , at least one of the sets S_j containing e_i appears in the final solution

Objective function: minimize the sum of the weights of the sets included in the solution

An integer programming formulation of Set Cover

Integer program for Set Cover:

$$\begin{array}{ll} \min & \sum_{i=0}^{n} w_{j} x_{j} \\ \text{subject to} & \sum_{j:e_{i} \in S_{j}} x_{j} \geq 1, \quad \text{for every } 1 \leq i \leq n \\ & x_{j} \in \{0,1\}, \quad \text{for every } 1 \leq j \leq m \end{array}$$

An integer programming formulation of Set Cover

Integer program for Set Cover:

$$\begin{array}{ll} \min & \sum_{i=0}^{n} w_{j} x_{j} \\ \text{subject to} & \sum_{j:e_{i} \in S_{j}}^{n} x_{j} \geq 1, & \text{for every } 1 \leq i \leq n \\ & x_{j} \in \{0,1\}, & \text{for every } 1 \leq j \leq m \end{array}$$

Let Z_{IP}^* be the optimum value of this integer program; OPT be the value of the optimum solution to Set Cover.

$$Z_{IP}^* = OPT.$$

 \triangle We cannot solve this integer program efficiently (why?).

LP relaxation: a bound for the value of the IP

LP relaxation for Set Cover:

$$\min_{\mathbf{x} \ge \mathbf{0}} \quad \sum_{i=0}^{n} w_j x_j$$

subject to
$$\sum_{j:e_i \in S_j} x_j \ge 1, \text{ for every } 1 \le i \le n$$

LP relaxation for Set Cover:

$$\min_{\mathbf{x} \ge \mathbf{0}} \qquad \sum_{i=0}^{n} w_j x_j$$
 subject to
$$\sum_{j:e_i \in S_j} x_j \ge 1, \text{ for every } 1 \le i \le n$$

- Every feasible solution to the original IP is a feasible solution to the LP relaxation.
- ▶ The value of any feasible solution to the original IP is the same in the LP (the objectives are the same).
- Let Z_{LP}^* be the optimum value of the LP relaxation.

$$Z_{LP}^* \le Z_{IP}^* = OPT$$

1 Review of last lecture

- 2 Integer Programming
- 3 Minimum-weight Set Cover
 An integer programming formulation of Set Cover
 The linear program relaxation
- 4 An approximation algorithm for Set Cover
 Rounding the LP solution
 - An *f*-approximation algorithm for Set Cover

Rounding the solution to the LP

LP relaxation for Set Cover:

$$\min_{\mathbf{x} \ge \mathbf{0}} \qquad \sum_{i=0}^{n} w_j x_j$$
 subject to
$$\sum_{j:e_i \in S_j} x_j \ge 1, \text{ for every } 1 \le i \le n$$

- Let x^* be an optimal solution to the LP relaxation.
- Let $f_i = \#$ subsets S_j where element e_i appears.
- Let $f = \max_{1 \le i \le n} f_i$.

 \blacktriangleright Set

$$\hat{x}_j = \begin{cases} 1, & \text{if } x_j^* \ge 1/f \\ 0, & \text{if } x_j^* < 1/f \end{cases}$$

Rounding yields a feasible solution to the original IP

The collection of sets S_j with $\hat{x}_j = 1$ cover all the elements.

- ▶ Consider the optimal solution x^* for the LP relaxation.
- Fix any element e_i ; recall that e_i appears in f_i subsets.
- ▶ For simplicity, relabel these subsets as $S_1, S_2, \ldots, S_{f_i}$. Then the optimal solution satisfies the constraint

$$x_1^* + x_2^* + \ldots + x_{f_i}^* \ge 1$$

Let x_m^* be the maximum of $x_1^*, x_2^*, \ldots, x_{f_i}^*$. Then

$$x_m^* \ge \frac{1}{f_i} \ge \frac{1}{f}$$

 \Rightarrow Our rounding procedure guarantees that, for every element e_i , at least one set S_i that covers e_i is chosen.

How far is the solution obtained by the rounding procedure above from to the optimal solution to Set Cover?

- We do **not** know OPT!
- **But** we have a bound for it: the value Z_{LP}^* of the LP relaxation!

Recall that we set $\hat{x}_j = 1$ if and only if $x_j^* \ge 1/f$. Then

$$\sum_{j} w_{j} \hat{x}_{j} \leq \sum_{j} w_{j} (fx_{j}^{*}) = f \sum_{j} w_{j} x_{j}^{*}$$
$$= f \cdot Z_{LP}^{*} \leq f \cdot OPT$$

Definition 1.

An α -approximation algorithm for an optimization problem is a polynomial-time algorithm that, for all instances of the problem, produces a solution whose value is within a factor of α of the value of the optimal solution.

Remark 1.

- ▶ α is the approximation ratio or approximation factor
- For minimization problems, $\alpha > 1$.
- For maximization problems, $\alpha < 1$.

Example 1: the rounding procedure described on slide 30 gives an *f*-approximation algorithm for **Set Cover**:

- ▶ it can be completed in polynomial-time
- \blacktriangleright it always returns a solution whose value is at most f times the value of the optimal solution.

Remark: if an element appears in too many sets (e.g., $f = \Omega(n)$), this algorithm does not provide a good approximation guarantee.

Example 2: a 2-approximation algorithm for VC is a polynomial-time algorithm that always returns a solution whose value is at most twice the value of the optimal solution.

A 2-approximation algorithm for VC

- Let $E = \{e_1, \ldots, e_m\}$ be the set of edges in the graph.
- Let S_j be the set of edges (ground elements) that are covered by vertex j.
- ▶ For every edge e_i , $f_i = 2$: e_i appears in exactly two subsets (why?).

• Hence
$$f = \max_{1 \le i \le m} f_i = 2$$
.