Outline

1 Recap

2 Strongly connected components in directed graphs via depth-first search

3 Shortest paths in graphs with non-negative edge weights (Dijkstra’s algorithm)
 - Correctness
 - Implementations
1 Recap

2 Strongly connected components in directed graphs via depth-first search

3 Shortest paths in graphs with non-negative edge weights (Dijkstra’s algorithm)
 - Correctness
 - Implementations
Review of the last lecture

- Depth-first search (DFS)
- Classification of graph edges in the DFS forest
- Applications
 1. Cycle detection
 2. Topological sorting
1. Recap

2. Strongly connected components in directed graphs via depth-first search

3. Shortest paths in graphs with non-negative edge weights (Dijkstra’s algorithm)
 - Correctness
 - Implementations
Fact 1.

Edge \((u, v) \in E\) is a \textcolor{red}{back} edge in a DFS tree if and only if

\[
\text{start}(v) < \text{start}(u) < \text{finish}(u) < \text{finish}(v).
\]

Fact 2.

If \((u, v) \in E\) is a \textcolor{red}{forward} edge in a DFS tree, then

\[
\text{start}(u) < \text{start}(v) < \text{finish}(v) < \text{finish}(u).
\]

Fact 3.

If \((u, v) \in E\) is a \textcolor{red}{cross} edge in the DFS forest, then

\[
\text{start}(v) < \text{finish}(v) < \text{start}(u) < \text{finish}(u).
\]
Exploring the connectivity of a graph

- **Undirected** graphs: find all connected components

- **Directed** graphs: find all *strongly connected components* (SCCs)
 - \(\text{SCC}(u) = \) set of nodes that are reachable from \(u \) and have a path back to \(u \)
 - SCCs provide a *hierarchical* view of the connectivity of the graph:
 - on a top level, the meta-graph of SCCs has a useful and simple structure *(coming up)*;
 - each meta-vertex of this graph is a fully connected subgraph that we can further explore.
How can we find SCC(u) using BFS?

1. Run BFS(u); the resulting tree T consists of the set of nodes to which there is a path from u
2. Define G^r as the reverse graph, where edge (i, j) becomes edge (j, i)
3. Run BFS(u) in G^r; the resulting BFS tree T' consists of the set of nodes that have a path to u
4. The common vertices in T, T' compose the strongly connected component of u.

What if we want all the SCCs of the graph?
Consider the meta-graph of all SCCs of G.

- Make a (super)vertex for every SCC;
- add a (super)edge from SCC C_i to SCC C_j if there is an edge from some vertex u of C_i to some vertex v of C_j.

What kind of graph is the meta-graph of SCC's?
Is there an SCC we could process first?

Suppose we had a sink SCC of G.

What will DFS discover if it starts at some node of this SCC?

1. How do we find a node that for sure lies in a sink SCC?
2. How do we continue to find all other SCCs?
Easier to find a node in a source SCC!

Fact 4.

The node assigned the largest finish time when we run $\text{DFS}(G)$ belongs to a source SCC in G.

Proof.

Let G be a directed graph. The meta-graph of its SCCs is a DAG. For an SCC C, let

$$\text{finish}(C) = \max_{v \in C} \text{finish}(v)$$

Lemma 5.

Let C_i, C_j be SCCs in G. Suppose there is an edge $(u, v) \in E$ such that $u \in C_i$ and $v \in C_j$. Then $\text{finish}(C_i) > \text{finish}(C_j)$.
Fact 4 provides a direct way to find a node in a source SCC of G: pick the node with largest *finish*.

But we want a node in a sink SCC of G!

Consider G^r, the graph where the edges of G are reversed. *How do the SCCs of G and G^r compare?*

Run DFS on G^r: the node with the largest *finish* comes from a source SCC of G^r (Fact 4). That is a sink SCC of G!
Using this observation to find all SCCs

We know how to find a sink SCC in G:

1. run $\text{DFS}(G^r)$; compute $finish$ times
2. run $\text{DFS}(G)$ starting from the node with the largest $finish$; the resulting tree T is a sink SCC in G.

How do we find all remaining SCCs?

Remove T from G: the remaining graph G' is a DAG, hence has at least one sink SCC.
Algorithm for finding SCCs in directed graphs

SCC\((G = (V, E))\)

1. Compute \(G^r\)
2. Run DFS\((G^r)\); compute \(finish(u)\) for all \(u\)
3. Run DFS\((G)\) in decreasing order of \(finish(u)\)
4. Output the vertices of each tree in the DFS forest of line 3 as an SCC.

Remark 1.

- Running time: \(O(n + m)\) — why?
- Equivalently, we can (i) run DFS\((G)\), compute finish times; (ii) run DFS\((G^r)\) by decreasing order of finish. Why?
A directed graph and its DFS forest with time intervals
DFS forest of G'; nodes are considered by decreasing
finish
Let G be a directed graph. The meta-graph of its SCCs is a DAG.

For an SCC C, let

$$\text{finish}(C) = \max_{v \in C} \text{finish}(v)$$

Lemma 6.

Let C_i, C_j be SCCs in G. Suppose there is an edge $(u, v) \in E$ such that $u \in C_i$ and $v \in C_j$. Then $\text{finish}(C_i) > \text{finish}(C_j)$.
Proof of Lemma 5

There are two cases to consider:

1. $\text{start}(u) < \text{start}(v)$ (DFS starts at C_i)
 - Before leaving u, DFS will explore edge (u,v).
 - Since $v \in C_j$, all of C_j will now be explored.
 - Since there is no edge from C_j back to C_i (DAG!), all vertices in C_j will be assigned finish times before DFS backtracks to u and assigns a finish time to u. Thus
 \[
 \text{finish}(C_j) < \text{finish}(u) \leq \text{finish}(C_i)
 \]
2. \(\text{start}(u) > \text{start}(v) \) (DFS starts at \(C_j \))

Since there is no edge from \(C_j \) to \(C_i \), DFS will finish exploring \(C_j \) before it restarts from some vertex that will result in discovery of \(C_i \). Thus

\[
\text{finish}(C_j) < \text{start}(u) < \text{finish}(u) \\
\Rightarrow \text{finish}(C_j) < \text{finish}(C_i)
\]
Today

1. Recap

2. Strongly connected components in directed graphs via depth-first search

3. Shortest paths in graphs with non-negative edge weights (Dijkstra’s algorithm)
 - Correctness
 - Implementations
Weighted graphs

- Edge weights represent distances (or time, cost, etc.)
- Consider a path \(P = (v_0, \ldots, v_k) \). The weight of \(P \) is the sum of the weights of its edges:

\[
 w(P) = \sum_{i=0}^{k-1} w(v_i, v_{i+1}).
\]

- In weighted graphs, a \textbf{shortest path} from \(u \) to \(v \) is a path of minimum weight among all \(u-v \) paths, that is

\[
 \text{distance}(u, v) = \begin{cases}
 \min_{P} w(P), & \text{if exists } u-v \text{ path} \\
 \infty, & \text{otherwise}
 \end{cases}
\]
Input

- a weighted, directed graph $G = (V, E, w)$; function $w : E \rightarrow R$ maps edges to real-valued weights;
- a source (origin) vertex $s \in V$.

Output: for every vertex $v \in V$

- the length (weight) of a shortest s-v path;
- a shortest s-v path.
We can also solve

- **single-pair shortest-path problem**
- **single-destination shortest-paths problem**: find a shortest path from every vertex to a destination t
- **all-pairs shortest-paths**: find a shortest path between every pair of vertices
Single-source shortest-paths with non-negative edge weights:

Input
- a weighted, directed graph $G = (V, E, w)$; function $w : E \to \mathbb{R}^+$ maps edges to non-negative real-valued weights;
- a source (origin) vertex $s \in V$.

Output: for every vertex $v \in V$
- the length (weight) of a shortest s-v path;
- a shortest s-v path.
Dijkstra’s algorithm (Input: \(G = (V, E, w) \), \(s \in V \))

Output: arrays \(\text{dist} \), \(\text{prev} \) with \(n \) entries such that

- \(\text{dist}(v) \) stores the length of the shortest \(s \)-\(v \) path
- \(\text{prev}(v) \) stores the node before \(v \) in the shortest \(s \)-\(v \) path

At all times, maintain a set \(S \) of nodes for which the distance from \(s \) has been determined.

- Initially, \(\text{dist}(s) = 0 \), \(S = \{s\} \)
- Each time, add to \(S \) the node \(v \in V - S \) that
 1. has an edge from some node in \(S \);
 2. minimizes the following quantity among all nodes \(v \in V - S \)

\[
d(v) = \min_{u \in S : (u,v) \in E} \{ \text{dist}(u) + w(u, v) \}
\]

- Set \(\text{prev}(v) = u \).
An example weighted directed graph
Dijkstra’s output for example graph

The distances (in parentheses) and reverse shortest paths.
Greedy principle: a local decision rule is applied at every step.

- Dijkstra’s algorithm is greedy: always form the shortest new $s-v$ path by first following a path to some node u in S, and then a single edge (u, v).

- Proof of optimality: it always stays ahead of any other solution; when a path to a node v is selected, that path is shorter than every other possible $s-v$ path.
Correctness of Dijkstra’s algorithm

At all times, the algorithm maintains a set S of nodes for which it has determined a shortest-path distance from s.

Claim 1.

Consider the set S at any point in the algorithm’s execution. For each u in S, the path P_u is a shortest s-u path.

Optimality of the algorithm follows from the claim (*why?*).
Proof of Claim 1

By induction on the size of S.

- **Base case**: $|S| = 1$, $\text{dist}(s) = 0$.
- **Hypothesis**: suppose the claim is true for $|S| = k$: for every $u \in S$, P_u is a shortest s-u path.
- **Step**: let v be the $k + 1$-st node added to S. We want to show that P_v, which is P_u for some $u \in S$, followed by (u, v), is a shortest s-v path.

Consider any other s-v path, call it P. P must leave S somewhere since $v \notin S$: let $y \neq v$ be the first node of P in $V - S$ and $x \in S$ the node before y in P. Since v was added in this iteration of the algorithm, it must be that $d(v) \leq d(y)$. So just the subpath $s \rightarrow x \rightarrow y$ in P is longer than P_v! Hence P is longer as well (*why*?).
Dijkstra-v1\((G = (V, E, w), s \in V)\)

Initialize\((G, s)\)

\(S = \{s\}\)

while \(S \neq V\) do
 Select a node \(v \in V - S\) with at least one edge from \(S\) so that
 \[
 d(v) = \min_{u \in S, (u, v) \in E} \{\text{dist}[u] + w(u, v)\}
 \]
 \(S = S \cup \{v\}\)
 \(\text{dist}[v] = d(v)\)
 \(\text{prev}[v] = u\)
end while

Initialize\((G, s)\)

for \(v \in V\) do
 \(\text{dist}[v] = \infty\)
 \(\text{prev}[v] = \text{NIL}\)
end for

\(\text{dist}[s] = 0\)
Improved implementation (I)

Idea: Keep a conservative overestimate of the true shortest $s-u$ path in $dist[u]$. Update $dist[v]$ for all v with $(u, v) \in E$.

Dijkstra-v2($G = (V, E, w), s \in V$)

Initialize(G, s)

$S = \emptyset$

while $S \neq V$ do

Pick u so that $dist[u]$ is minimum among all nodes in $V - S$

$S = S \cup \{u\}$

for $(u, v) \in E$ do

Update(u, v)

end for

end while

Update(u, v)

if $dist[v] > dist[u] + w(u, v)$ then

$dist[v] = dist[u] + w(u, v)$

$prev[v] = u$

end if
Improved implementation (II): binary min-heap

Idea: Use a priority queue implemented as a binary min-heap: store vertex u with key $\text{dist}[u]$. Required operations: Insert, ExtractMin; DecreaseKey for Update; each takes $O(\log n)$ time.

Dijkstra-v3($G = (V, E, w), s \in V$)

Initialize(G, s)
$Q = \{V; \text{dist}\}$
$S = \emptyset$

while $Q \neq \emptyset$ do
 $u = \text{ExtractMin}(Q)$
 $S = S \cup \{u\}$
 for $(u, v) \in E$ do
 Update(u, v)
 end for
end while

Running time: $O(n \log n + m \log n) = O(m \log n)$

When is Dijkstra-v3() better than Dijkstra-v2()?