
Analysis of Algorithms, I
CSOR W4231

Eleni Drinea
Computer Science Department

Columbia University

Representative NP-complete problems: TSP, Set Cover

Outline

1 Review of last lecture

2 Representative NP-complete problems

3 Integer Programming

4 Minimum-weight Set Cover
An integer programming formulation of Set Cover

The linear program relaxation

5 An approximation algorithm for Set Cover

Rounding the LP solution
An f -approximation algorithm for Set Cover

Today

1 Review of last lecture

2 Representative NP-complete problems

3 Integer Programming

4 Minimum-weight Set Cover
An integer programming formulation of Set Cover

The linear program relaxation

5 An approximation algorithm for Set Cover

Rounding the LP solution
An f -approximation algorithm for Set Cover

Complexity classes P , NP and NP-complete

Definition 1.

We define P to be the set of problems that can be solved by
polynomial-time algorithms.

Definition 2.

We define NP to be the set of decision problems that have an
efficient certifier.

Fact 3.

P ⊆ NP

Definition 4.

A problem X(D) is NP-complete if

1. X(D) ∈ NP and

2. for all Y ∈ NP, Y ≤P X.

How do we show that a problem is NP-complete?

Suppose we had an NP-complete problem X.

To show that another problem Y is NP-complete, we use
transitivity of reductions. So we “only” need show that

1. Y ∈ NP
2. X ≤P Y

The first NP-complete problem

Theorem 5 (Cook-Levin).

Circuit SAT is NP-complete.

Satisfiability of boolean functions

SAT: Given a formula φ in CNF with n variables and m clauses,
is φ satisfiable?

3SAT: Given a formula φ in CNF with n variables and m clauses
such that each clause has exactly 3 literals, is φ satisfiable?

Circuit-SAT: Given a boolean combinatorial circuit C, is there
an assignment of truth values to its inputs that causes the
output to evaluate to 1?

Lemma 6.

Circuit-SAT ≤P SAT, SAT ≤P 3SAT and 3SAT ≤P IS(D)

Common pitfalls when showing NP-completeness

1. Carry out the reduction in the wrong direction

2. Reduce from a problem not known to be NP-complete

3. Exponential-time transformations
I Subsets, permutations

4. Neglect to carefully prove both directions of equivalence of
the original and the derived instances; that is, x is a yes
instance of X if and only if y = R(x) is a yes instance of Y

5. Neglect to show that the problem is in NP

Suggestions

I You should think carefully which problem is most suitable
to reduce from

I In absence of other ideas, reduce from 3SAT

Today

1 Review of last lecture

2 Representative NP-complete problems

3 Integer Programming

4 Minimum-weight Set Cover
An integer programming formulation of Set Cover

The linear program relaxation

5 An approximation algorithm for Set Cover

Rounding the LP solution
An f -approximation algorithm for Set Cover

The Traveling Salesman Problem (TSP)

Tour: a simple cycle that visits every vertex exactly once.

Definition 7 (TSP(D)).

Given n cities {1, . . . , n}, a set of non-negative distances dij
between every pair of cities and a budget B, is there a tour of
length ≤ B?

Equivalently, is there a permutation π such that

1. π(1) = π(n+ 1) = 1; that is, we start and end at city 1

2. the total distance travelled satisfies

n∑
i=1

dπ(i)π(i+1) ≤ B

Application: Google street view car

Example instance of TSP

3

1

2

4

10

6

9

9

5

3

Depending on the distances, TSP instances may be

I Asymmetric: dij 6= dji

I Symmetric: dij = dji

I Metric: satisfy the triangle inequality dij ≤ dik + dkj

I Euclidean: e.g., cities are in R2 hence city i corresponds to point
(xi, yi); then dij =

√
(xi − xj)2 + (yi − yj)2

A related problem and hardness of TSP(D)

Hamiltonian Cycle: Given a graph G = (V,E), is there a
simple cycle that visits every vertex exactly once?

Claim 1.

Hamiltonian Cycle is NP-complete.

Proof: Reduction from 3SAT (e.g., see your textbook).

Claim 2.

Symmetric TSP(D) is NP-complete.

Proof: reduction from undirected Hamiltonian Cycle.

Proof of Claim 2 (Hamiltonian Cycle ≤P TSP(D))

1. Start from an arbitrary instance of undirected Hamiltonian

Cycle, that is, an undirected graph G = (V,E).

2. Construct the following instance (G′ = (V ′, E′, w), B) of TSP(D):
G′ is a complete weighted graph with V ′ = V such that for every
edge e ∈ E′,

we =

{
1, if e ∈ E
2, otherwise

3. Set the budget B = n.

This completes the reduction transformation.

Equivalence of the instances is straightforward:

I If G has a hamiltonian cycle, that cycle is a tour of length n in
G′.

I If G′ has a tour of length n, it must consist of edges of weight 1
(why?); thus all these edges appear in G.

Concluding remarks on TSP

I Claim 1 also holds for directed Hamiltonian cycle. An
exact analog of the proof of Claim 2 then shows that
asymmetric TSP is NP-complete.

I It is possible to reduce Hamiltonian cycle to Euclidean

TSP, thus showing that even Euclidean TSP is
NP-complete.

I However, these problems are not similar in terms of how
well they can be approximated: it is possible to provide
very good approximate solutions to Euclidean TSP, which
is not the case for Symmetric TSP.

Packing and partitioning problems

I Set Packing: given a set U of a elements, a collection
S1, S2, . . . , Sb of subsets of U , and a number k, is there a
collection of at least k subsets such that no two of them
intersect?

I 3D-Matching: Given disjoint sets B,G,H, each of size n,
and a set of triples T ⊆ B ×G×H, is there a set of n
triples in T , no two of which have an element in common?

Reduction from 3SAT.

Numerical problems

I Subset sum: Given natural numbers w1, . . . , wn and a
(large) target weight W , is there a subset of w1, . . . , wn
that adds up exactly to W?

Applications: cryptography, scheduling

I Minimum-weight solution to linear equations: Given
a system of linear equations in n variables with integer
constants, and an integer B ≤ n, does it have a rational
solution with at most B non-zero entries?

Applications: coding theory, signal processing

Similar problems with very different complexities

NP-complete P
max cut min cut

longest path shortest path

3D matching matching

Hamiltonian cycle Euler cycle

3-colorability 2-colorability

3-SAT 2-SAT

LCS of n sequences LCS of 2 sequences

More on NP-completeness:

I Computers and Intractability: A guide to the theory of

NP-completeness, by Garey and Johnson

I Computational Complexity, by C. Papadimitriou

Today

1 Review of last lecture

2 Representative NP-complete problems

3 Integer Programming

4 Minimum-weight Set Cover
An integer programming formulation of Set Cover

The linear program relaxation

5 An approximation algorithm for Set Cover

Rounding the LP solution
An f -approximation algorithm for Set Cover

Integer Programming

Integer programming (IP(D)): Given a system of linear
inequalities in n variables and m constraints with integer
coefficients and a integer target value k, does it have an integer
solution of value k?

I Applications: production planning, scheduling trains, etc.

Example:
max cTx

subject to Ax ≤ b

x ∈ Zn

Here A is an m× n matrix, b ∈ Rm, c ∈ Rn, x is an integer
vector with n components.

What does the set of feasible solutions look like?

Rounding the LP is often insufficient

max
x1≥0,x2≥0

1.00x1 + 0.64x2

subject to 50x1 + 31x2 ≤ 250

3x1 − 2x2 ≥ −4

x1, x2 integer

x₁

x₂

0

Optimum LP solution
(376/193, 950/193)

1

o o o o o

o

o

o

1

2

3

4

5 o

2 3 4 5

o o o o o

o o o o o

o o o o o

o o o o o

o o o o o

o

o

Optimum IP
solution (5,0)

The optimal linear programming
solution is far from the optimal

integer solution $(5,0)$.

From Integer Programming by L. Wolsey

Is IP(D) hard?

I IP(D) is in NP.

I We can quickly solve LPs with several thousands of
variables and constraints but there exist integer programs
with 10 variables and 10 constraints that are very hard to
solve.

Is IP(D) hard?

I IP(D) is in NP.

I We can quickly solve LPs with several thousands of
variables and constraints but there exist integer programs
with 10 variables and 10 constraints that are very hard to
solve.

I This is not too surprising: integer programs restricted to
solutions x ∈ {0, 1}n model yes/no decisions, which are
generally hard.

I To formalize this intuition, we will reduce an NP-complete
problem to IP(D).

Integer Programs for Vertex Cover and IS

First we formulate integer programs for two NP-hard problems.

IP for Independent Set:

max

n∑
i=0

xi

subject to xi + xj ≤ 1, for every (i, j) ∈ E
xi ∈ {0, 1}, for every i ∈ V

IP for Vertex Cover:

min

n∑
i=0

xi

subject to xi + xj ≥ 1, for every (i, j) ∈ E
xi ∈ {0, 1}, for every i ∈ V

IP(D) is NP-complete

Claim 3.

VC(D) ≤P IP(D)

Proof.

Reduction from arbitrary instance (G = (V,E), k) of VC(D) to
the following integer program with target value k:

min 0

subject to xi + xj ≥ 1, for every (i, j) ∈ E
n∑
i=1

xi ≤ k

xi ∈ {0, 1}, for every i ∈ V

Equivalence of the instances is straightforward.

Similar problems with very different complexities (new)

NP-complete P
max cut min cut

longest path shortest path

3D matching matching

Hamiltonian cycle Euler cycle

3-colorability 2-colorability

3-SAT 2-SAT

LCS of n sequences LCS of 2 sequences

integer programming linear programming

The theory of integer and linear programming and duality
can guide the design of approximation algorithms,
and exact solutions, for hard problems.

Today

1 Review of last lecture

2 Representative NP-complete problems

3 Integer Programming

4 Minimum-weight Set Cover
An integer programming formulation of Set Cover

The linear program relaxation

5 An approximation algorithm for Set Cover

Rounding the LP solution
An f -approximation algorithm for Set Cover

Minimum-weight Set Cover

Input

I a set E = {e1, e2, . . . , en} of n elements

I a collection of subsets of these elements S1, S2, . . . , Sm,
where each Sj ⊆ E

I a non-negative weight wj for every subset Sj

Output

A minimum-weight collection of subsets that cover all of E.

In symbols: find an I ⊆ {1, . . . ,m} such that ∪i∈ISi = E and∑
i∈I

wi is minimum.

(Unweighted Set Cover: wj = 1 for all j)

Example instance of Set Cover

1 1

1

1

1+ε 1+ε

n = 8 ground elements, m = 6 subsets with weights
w1 = w2 = w3 = w4 = 1, w5 = w6 = 1 + ε.

Motivation: detect computer viruses

Motivation (IBM AntiVirus): detect features of boot sector
viruses that do not occur in typical applications; then use them
to discover more viruses

I Ground elements: known boot sector viruses (n ≈ 150)

I Sets: labelled by some three-byte sequence occurring in
these viruses but not occurring in typical computer
applications (m ≈ 21000); each set consisted of all the
viruses that contained the three-byte sequence

I Output: a small number of such sequences—much smaller
than 150—that cover all known viruses

=⇒ use the small set cover as features in a neural classifier to
determine presence of a boot sector virus

=⇒ detect new viruses (many boot sector viruses are written by
modifying existing ones)

Reduction via generalization

Claim 4.

Set-Cover(D) is NP-complete.

Proof.

Reduction from VC(D). Input instance: (G = (V,E), k).

I Set E = {e1, . . . , em} to be the set of ground elements we
want to cover.

I For every vertex j, set Sj to be the set of edges (ground
elements) that are incident to–hence covered by–vertex j.

I Set wj = 1 for all 1 ≤ j ≤ n.

Equivalence of instances: input graph has a vertex cover of size
k if and only if E has a set cover of weight k.

Forming the integer program for Set Cover

Variables: we introduce one variable per set Sj ; intuitively,

xj =

{
1, if Sj is included in the solution
0, otherwise

Constraints: ensure that every element is covered:

for every element ei, at least one of the sets Sj

containing ei appears in the final solution

Objective function: minimize the sum of the weights of the
sets included in the solution

An integer programming formulation of Set Cover

Integer program for Set Cover:

min

m∑
i=0

wjxj

subject to
∑

j:ei∈Sj

xj ≥ 1, for every 1 ≤ i ≤ n

xj ∈ {0, 1}, for every 1 ≤ j ≤ m

An integer programming formulation of Set Cover

Integer program for Set Cover:

min

m∑
i=0

wjxj

subject to
∑

j:ei∈Sj

xj ≥ 1, for every 1 ≤ i ≤ n

xj ∈ {0, 1}, for every 1 ≤ j ≤ m

Let Z∗IP be the optimum value of this integer program;
OPT be the value of the optimum solution to Set Cover.

Z∗IP = OPT.

4 We cannot solve this integer program efficiently (why?).

LP relaxation: a bound for the value of the IP

LP relaxation for Set Cover:

min
x≥0

m∑
i=0

wjxj

subject to
∑

j:ei∈Sj

xj ≥ 1, for every 1 ≤ i ≤ n

LP relaxation: a bound for the value of the IP

LP relaxation for Set Cover:

min
x≥0

m∑
i=0

wjxj

subject to
∑

j:ei∈Sj

xj ≥ 1, for every 1 ≤ i ≤ n

I Every feasible solution to the original IP is a feasible
solution to the LP relaxation.

I The value of any feasible solution to the original IP is the
same in the LP (the objectives are the same).

I Let Z∗LP be the optimum value of the LP relaxation.

Z∗LP ≤ Z∗IP = OPT

Today

1 Review of last lecture

2 Representative NP-complete problems

3 Integer Programming

4 Minimum-weight Set Cover
An integer programming formulation of Set Cover

The linear program relaxation

5 An approximation algorithm for Set Cover

Rounding the LP solution
An f -approximation algorithm for Set Cover

Rounding the solution to the LP

LP relaxation for Set Cover:

min
x≥0

n∑
i=0

wjxj

subject to
∑

j:ei∈Sj

xj ≥ 1, for every 1 ≤ i ≤ n

I Let x∗ be an optimal solution to the LP relaxation.

I Let fi = # subsets Sj where element ei appears.

I Let f = max
1≤i≤n

fi.

I Set

x̂j =

{
1, if x∗j ≥ 1/f

0, if x∗j < 1/f

Rounding yields a feasible solution to the original IP

The collection of sets Sj with x̂j = 1 cover all the elements.

I Consider the optimal solution x∗ for the LP relaxation.

I Fix any element ei; recall that ei appears in fi subsets.

I For simplicity, relabel these subsets as S1, S2, . . . , Sfi . Then
the optimal solution satisfies the constraint

x∗1 + x∗2 + . . .+ x∗fi ≥ 1

Let x∗m be the maximum of x∗1, x
∗
2, . . . , x

∗
fi

. Then

x∗m ≥
1

fi
≥ 1

f

⇒ Our rounding procedure guarantees that, for every element
ei, at least one set Sj that covers ei is chosen.

An f -approximation algorithm for Set Cover

How far is the solution obtained by the rounding procedure
above from to the optimal solution to Set Cover?

I We do not know OPT !

I But we have a bound for it: the value Z∗LP of the LP
relaxation!

Recall that we set x̂j = 1 if and only if x∗j ≥ 1/f . Then∑
j

wj x̂j ≤
∑
j

wj(fx
∗
j) = f

∑
j

wjx
∗
j

= f · Z∗LP ≤ f ·OPT

Approximation algorithms

Definition 8.

An α-approximation algorithm for an optimization problem is a
polynomial-time algorithm that, for all instances of the
problem, produces a solution whose value is within a factor of α
of the value of the optimal solution.

Remark 1.

I α is the approximation ratio or approximation factor

I For minimization problems, α > 1.

I For maximization problems, α < 1.

Examples

Example 1: the rounding procedure described on slide 53 gives
an f -approximation algorithm for Set Cover:

I it can be completed in polynomial-time

I it always returns a solution whose value is at most f times
the value of the optimal solution.

Remark: if an element appears in too many sets (e.g.,
f = Ω(n)), this algorithm does not provide a good
approximation guarantee.

Example 2: a 2-approximation algorithm for VC is a
polynomial-time algorithm that always returns a solution whose
value is at most twice the value of the optimal solution.

A 2-approximation algorithm for V C

4

2

31

e1

e5e3

e2

e4

I Let E = {e1, . . . , em} be the set of edges in the graph.

I Let Sj be the set of edges (ground elements) that are
covered by vertex j.

I For every edge ei, fi = 2: ei appears in exactly two subsets
(why?).

I Hence f = max
1≤i≤m

fi = 2.

	Review of last lecture
	Representative NP-complete problems
	Integer Programming
	Minimum-weight Set Cover
	An integer programming formulation of Set Cover
	The linear program relaxation

	An approximation algorithm for Set Cover
	Rounding the LP solution
	An f-approximation algorithm for Set Cover

