1. The offline problem

2. An optimal algorithm for the offline problem: Farthest-into-Future (FF)

3. Proof of optimality of FF

4. Online problem
1. Data Compression
 - Symbol codes
 - Optimal lossless compression and prefix codes
 - Trees and prefix codes

2. Greedy algorithms
 - A greedy algorithm for optimal lossless compression using symbol codes: the Huffman algorithm
Cache maintenance

- The offline problem
- An optimal algorithm for the offline problem: Farthest-in-Future (FF)
- Proof of optimality of FF
- The online problem
1. The offline problem

2. An optimal algorithm for the offline problem: Farthest-into-Future (FF)

3. Proof of optimality of FF

4. Online problem
Input

- \(n \), the number of pages in the main memory
- \(k \), the size of the cache memory
- a sequence of \(m \) requests for memory pages \(r_1, r_2, \ldots, r_m \)

Example:

- \(n = 3 \)
- \(k = 2 \)
- \(m = 7 \)
- sequence of requests: \(a, b, c, b, c, a, b \)
To service a request, the corresponding page must be in the cache.

⇒ After the first k requests for distinct pages the cache is full.

- **Cache miss**: a request for a page that is not in the cache.
 - We must evict a page from the cache to bring in the requested page.

Assumption: a request is received and serviced within the same time step.
At each time step $1 \leq t \leq m$, we must decide which page (if any) to evict from the cache.

Definition 1 (Scheduling algorithm).

A schedule is a sequence of eviction decisions so that all m requests are serviced at time m. An algorithm that provides such a schedule is a scheduling algorithm.

Goal: find the schedule that minimizes the total number of cache misses.
Example

- # pages in main memory: $n = 3$
- cache size: $k = 2$
- sequence of $m = 7$ requests: a, b, c, b, c, a, b

<table>
<thead>
<tr>
<th>time t:</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>requests:</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
</tr>
</tbody>
</table>
Example

- # pages in main memory: \(n = 3 \)
- cache size: \(k = 2 \)
- sequence of \(m = 7 \) requests: \(a, b, c, b, c, a, b \)

<table>
<thead>
<tr>
<th>time (t):</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>requests:</td>
<td>(a, b, c, b, c, a, b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eviction schedule (S):</td>
<td>(-, - , a, - , - , c, -)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cache contents:</td>
<td>{a} {a, b} {b, c} {b, c} {b, c} {b, a} {b, a}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- "-" stands for "no eviction"
- \(S = \{ -, -, a, -, -, c, - \} \) evicts \(a \) at time 3, \(c \) at time 6
- \(S \) incurs 2 cache misses (can’t do better here)
Offline vs online problem

- **Offline** problem: the entire sequence of requests \(\{r_1, r_2, \ldots, r_m\} \) is part of the input (known at time \(t = 0 \))

- **Online** problem (more natural): requests arrive one at a time; \(r_t \) must be serviced at time \(t \), before future requests \(r_{t+1}, \ldots, r_m \) are seen

- A **scheduling algorithm for the online problem** can only base its eviction decision at time \(t \) on
 1. the requests it has seen so far
 2. the eviction decisions it has made so far

- The optimal offline algorithm helps to understand the online problem *(coming up)*
1. The offline problem

2. An optimal algorithm for the offline problem: Farthest-into-Future (FF)

3. Proof of optimality of FF

4. Online problem
Definition 2 (Farthest-into-Future).

FF: When the page requested at time i is not in the cache, evict from the cache the page that is needed the farthest into the future and bring in the requested page.

Notation: we will denote the schedule produced by this algorithm S_{FF}.

Why would S_{FF} be optimal?
Definition 3 (Reduced schedule).

A reduced schedule brings a page in the cache at time t only if

1. the page is requested at time t; and
2. the page is not already in the cache.

Remark 1.

1. In a sense, a reduced schedule performs the least amount of work at every time step.
2. FF is a reduced schedule.
There is an optimal reduced schedule

Fact 4.

We can transform a non-reduced schedule into a reduced one that is at least as good, that is, incurs at most the same number of evictions.

Remark 2.

- The expensive memory operation is the eviction: even when no cache miss is incurred, we still count #evictions.
- In reduced schedules, #cache misses = # evictions.
- Given Fact 4, we can focus solely on reduced schedules.
Proof of Fact 4

- Let S' be a schedule that is not reduced and solves an instance of cache maintenance.

- We will transform S' into a reduced schedule S
 - Time i, request $r_i \neq a$:
 - if S' evicts a page from the cache to bring in page a, not requested at time i
 - S pretends it brings in a but in fact does nothing
 - First time step $j > i$ such that $r_j = a$: S brings in a
 \Rightarrow charge the cache miss of S' at time j to the eviction of S at the earlier time i

- Thus S performs at most as many evictions as S'.
1. The offline problem

2. An optimal algorithm for the offline problem: Farthest-into-Future (FF)

3. Proof of optimality of FF

4. Online problem
Optimality of FF

Claim 1.

Let \(S \) be a reduced schedule that makes the same eviction decisions as \(S_{FF} \) up to time \(t = i \), that is, up to request \(i \). Then there is a reduced schedule \(S' \) that

1. makes the same eviction decisions as \(S_{FF} \) up to time \(t = i + 1 \), that is, up to request \(i + 1 \);
2. the total number of cache misses it incurs is no more than that incurred by \(S \).

Proposition 1.

The schedule \(S_{FF} \) provided by the Farthest-into-Future algorithm is optimal.
Proof of Proposition 1: case $i = 0$

Notation
- $cm(S) =$ total #cache misses of schedule S
- S^* is an optimal reduced schedule
- Schedule S_1 follows schedule S_2 up to request i if S_1 makes the same eviction decisions as S_2 up to the i-th request

$i = 0$: trivially, S^* follows S_{FF} up to request $i = 0$. By Claim 2, we can construct a reduced schedule S_1 such that

1. S_1 follows S_{FF} up to request $i = 1$
2. $cm(S_1) \leq cm(S^*)$.
Proof of Proposition 1: case $i > 0$

- $i = 1$: now S_1 is a reduced schedule that follows S_{FF} up to request $i = 1$. By Claim 2, we can construct a reduced schedule S_2 such that
 1. S_2 follows S_{FF} up to request $i = 2$
 2. $cm(S_2) \leq cm(S_1)$.

- $i = 2$: now S_2 is a reduced schedule that follows S_{FF} up to request $i = 2$. By Claim 2, we can construct a reduced schedule S_3 such that
 1. S_3 follows S_{FF} up to request $i = 3$
 2. $cm(S_3) \leq cm(S_2)$.
Proof of Proposition 1: $S_m = S_{FF}$

- Applying the claim for every $3 \leq i \leq m - 1$, we obtain the reduced schedule S_m that
 1. follows S_{FF} up to time m
 2. $cm(S_m) \leq cm(S_{m-1})$.

Tracing back all the inequalities, we obtain $cm(S_m) \leq cm(S^*)$.

- Finally, since S_m follows S_{FF} up to time m, $S_{FF} = S_m$.

Hence $cm(S_{FF}) = cm(S_m) \leq cm(S^*)$.

Thus S_{FF} is optimal.
Claim 2.

Let \(S \) be a reduced schedule that makes the same eviction decisions as \(S_{FF} \) up to time \(t = i \), that is, up to request \(i \). Then there is a reduced schedule \(S' \) that

1. makes the same eviction decisions as \(S_{FF} \) up to time \(t = i + 1 \), that is, up to request \(i + 1 \);
2. incurs no more total cache misses than \(S \) does.

Proposition 2.

The schedule \(S_{FF} \) provided by the Farthest-into-Future algorithm is optimal.
Proof of Claim 2

Notation:

- $cm(S) = \text{total \#cache misses of schedule } S$
- $C_i(S) = \text{contents of the cache of schedule } S \text{ at time } i$

Since S and S_{FF} have made the same scheduling decisions up to time i, at the end of time step i:

- the contents of their caches are identical, hence

$$C_i(S) = C_i(S_{FF})$$

- so far, S has the same number of cache misses as S_{FF}

Suppose that at time $i + 1$, page p is requested, hence $r_{i+1} = p$.
Proof of Claim 2, case 1: \(r_{i+1} = x \in C_i(S) \)

1. If \(x \in C_i(S) \)
 - \(x \in C_i(S_{FF}) \) since \(C_i(S) = C_i(S_{FF}) \)
 - no cache miss for either schedule

 ![Diagram](image)

 - Set \(S' = S \); then
 1. \(S' \) follows \(S_{FF} \) up to time \(i + 1 \) (\(S \) does!)
 2. \(cm(S') \leq cm(S) \).
Proof of Claim 2, case 2: $r_{i+1} = x \notin C_i(S)$

2. If $x \notin C_i(S)$
 - x also not in $C_i(S_{FF})$ since $C_i(S) = C_i(S_{FF})$
 - both schedules must bring x in, hence incur a cache miss

2.1: If S and S_{FF} both evict the same page p, set $S' = S$
 1. S' follows S_{FF} up to time $i + 1$ (since S does)
 2. $cm(S') \leq cm(S)$.
Proof of Claim 2, case 2.2: $r_{i+1} = x \not\in C_i(S)$

2.2: If S evicts p but S_{FF} evicts q:

- By construction of S_{FF}, p must be requested later in the future than q.
- At the end of time step $i + 1$, the cache contents for the two schedules will differ in exactly one item.
Proof of Claim 2, case 2.2: S evicts p, S_{FF} evicts q

At the end of time step $i + 1$

- the cache of S contains q
- the cache of S_{FF} contains p
- the remaining $k - 1$ items in both caches are the same
- thus

\[C_{i+1}(S_{FF}) = C_{i+1}(S) - \{q\} + \{p\}. \]

- Since we want S' to agree with S_{FF} up to time $i + 1$, S'
evicts σ from its cache as well. Hence

\[C_{i+1}(S') = C_{i+1}(S_{FF}) = C_{i+1}(S) - \{q\} + \{p\}. \]
Roadmap for case 2.2: S evicts p, S_{FF} evicts q

- **At the end of time step $i + 1**
 - the cache contents of S, S' differ in exactly one item
 - $\#\text{cache misses of } S = \#\text{cache misses of } S'$

- **Want to ensure that S' will not incur more misses than S for $i + 1 < t \leq m$.**

- **Idea:** set $S' = S$ as soon as the cache contents of S, S' are the same again.

 ⇒ **Goal:** make $C_t(S')$ equal $C_t(S)$ for the earliest $t > i + 1$ possible, while not incurring unnecessary misses.

 - Once $C_t(S') = C_t(S)$, set $S' = S$; if S' has not incurred more misses than S between steps $i + 2$ and t, then $cm(S') \leq cm(S)$.
Case 2.2.1: $r_t = x \not\in \{p, q\}$, $x \not\in C_t(S)$, S evicts q

For all $t > i + 1$, S' follows S until one of the following happens for the first time:

2.2.1: $r_t = y \not\in \{p, q\}$, and $y \not\in C_t(S)$, and S evicts q.

Since $C_t(S')$ and $C_t(S')$ only differ in p, q, then $y \not\in C_t(S')$.
Set S' to evict p and bring in y. Then $C_t(S') = C_t(S)$!

Set $S' = S$ henceforth: S' follows S_{FF} up to time $i + 1$ and $cm(S') \leq cm(S)$.

Case 2.2.2.1: \(r_t = p \), \(S \) evicts \(q \)

2.2.2: \(r_t = p \)

2.2.2.1: If \(S \) evicts \(q \), \(C_t(S) = C_t(S')! \)

Set \(S' = S \) henceforth: \(S' \) follows \(S_{FF} \) up to time \(i + 1 \) and \(cm(S') < cm(S) \).
Case 2.2.2.2: \(r_t = p, \) \(S \) evicts \(y \neq q \)

2.2.2: \(r_t = p \)

2.2.2.2: If \(S \) evicts \(y \neq q \) from its cache, then \(S' \) evicts \(y \) as well and brings in \(q \). Then \(C_t(S') = C_t(S) \).

Set \(S' = S \) henceforth: \(S' \) follows \(S_{FF} \) up to time \(i + 1 \) and \(cm(S') < cm(S) \).
2.2.2.2: resolving the final issue (we’re not done yet!)

- S' is no longer **reduced**: σ was brought in when there was no request for σ at time t (recall that $r_t = q$).

- Fortunately, we can use Fact 1 to transform S' into a reduced schedule \overline{S} that
 - incurs at most the same number of evictions as S'
 - still follows S_{FF} up to time $i + 1$: all the real evictions of the reduced S' will happen **after** time $i + 1$!

- Hence we return \overline{S} as the schedule that satisfies Claim 2.
2.2.3: \(r_t = p \)

Can’t happen! \(S_{FF} \) evicted \(q \) and not \(p \), hence

- \(p \) appears farther in the future than \(q \)
- one of cases i., ii. will happen first
1. The offline problem

2. An optimal algorithm for the offline problem: Farthest-into-Future (FF')

3. Proof of optimality of FF

4. Online problem
The online problem

- **Offline** problem: the entire sequence of requests \(\{r_1, r_2, \ldots, r_m\} \) is part of the input (known at time \(t = 0 \))

- **Online** problem (more natural): requests arrive one at a time; \(r_t \) must be serviced at time \(t \), before \(r_{t+1}, \ldots, r_m \) are seen

- An **online scheduling algorithm** can only base its eviction decision at time \(t \) on
 1. the requests it has seen so far
 2. the eviction decisions it has made so far

- The optimal offline algorithm helps to understand the online problem.
The Least Recently Used principle

- The **Least Recently Used (LRU)** principle: evict the page that was requested the **longest ago**

- **Intuition**: a running program will generally keep accessing the things it’s just been accessing (**locality of reference**)

- Essentially Farthest-into-Future (**FF**) reversed in time.

- LRU behaves well on average inputs.

- However an adversary can devise a specific sequence of online requests that will cause LRU to perform very badly compared to the optimal offline algorithm (**how?**).
Worst-case input to LRU

Example

- #pages in main memory: \(n = 3 \)
- size of the cache: \(k = 2 \)
- sequence of online requests

\[
\begin{align*}
\text{\{a, b, c\}} & \quad \text{\{a, b, c\}} & \quad \ldots & \quad \text{\{a, b, c\}} \\
1 & 2 & \ldots & k
\end{align*}
\]

\(\Rightarrow \) LRU: every request starting at time \(t = 3 \) is a miss, hence \(7 = 3k - 2 \) misses

\(\Rightarrow \) \(FF \): only \(4 = (3k - 1)/2 \) misses
Average-case performance of LRU

- Experimentally the best scheduling algorithms for the online problem are variants of LRU

- Competitive ratio: the worst-case ratio between the performance of the online algorithm over the performance of the optimal offline algorithm.